Brain research
-
Several neurological and psychiatric disorders present hyperexcitability of neurons in specific regions of the brain or spinal cord, partly because of some loss and/or dysfunction of gamma-amino butyric acid positive (GABA-ergic) inhibitory interneurons. Strategies that enhance inhibitory neurotransmission in the affected brain regions may therefore ease several or most deficits linked to these disorders. This perception has incited a huge interest in testing the efficacy of GABA-ergic interneuron cell grafting into regions of the brain or spinal cord exhibiting hyperexcitability, dearth of GABA-ergic interneurons or impaired inhibitory neurotransmission, using preclinical models of neurological and psychiatric disorders. ⋯ Moreover, future studies that are essential prior to considering the possible clinical application of these cells for the above neurological conditions are proposed. Particularly, the need for grafting studies utilizing medial ganglionic eminence-like progenitors generated from human pluripotent stem cells via directed differentiation approaches or somatic cells through direct reprogramming methods are emphasized. This article is part of a Special Issue entitled SI: PSC and the brain.
-
The prefrontal cortex plays an important role in shaping cognition and behavior. Many studies have shown that medial prefrontal cortex (mPFC) plays a key role in seeking, extinction, and reinstatement of cocaine seeking in rodent models of relapse. Subregions of mPFC appear to play distinct roles in these behaviors, such that the prelimbic cortex (PL) is proposed to drive cocaine seeking and the infralimbic cortex (IL) is proposed to suppress cocaine seeking after extinction. ⋯ We also present recent results calling the absolute nature of a PL vs. IL dichotomy into question. Finally, we consider alternate functions for mPFC that correspond less to response execution and inhibition and instead incorporate the complex cognitive behavior for which the mPFC is broadly appreciated.
-
Sexual neurosteroids (SN), namely 17β-estradiol (E2) and 5α-dehydrotestosterone (DHT), are synthesized in the hippocampus, where they induce circuit modifications by changing the number of excitatory spine synapses in a paracrine and sex-specific manner. The mechanisms of this sex-specific synapse turnover, which are likely to affect cognitive functions, are poorly understood. We found that hippocampal neurons synthesize estradiol, which maintains LTP and synapses in females but not in males. ⋯ The essential role of local estrogen on the stability and maintenance of connectivity in the hippocampus is consistent with age-related cognitive decline in women after menopause. In male animals the regulation of synaptic stability and plasticity by locally synthesized sexual steroids remains to be clarified. This article is part of a Special Issue entitled SI: Brain and Memory.
-
Astrogliosis is a defense response of the CNS to minimize primary damage and to repair injured tissues, but it ultimately generates harmful effects by upregulating inhibitory molecules to suppress neuronal elongation and forming potent barriers to axon regeneration. Chondroitin sulfate proteoglycans (CSPGs) are highly expressed by reactive scars and are potent contributors to the non-permissive environment in mature CNS. Surmounting strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. ⋯ Thus, CSPGs inhibit axon growth through multiple mechanisms, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries. This article is part of a Special Issue entitled SI: Spinal cord injury.
-
We performed here a systematic review of the studies using transcranial magnetic stimulation (TMS) as a research and clinical tool in patients with spinal cord injury (SCI). Motor evoked potentials (MEPs) elicited by TMS represent a highly accurate diagnostic test that can supplement clinical examination and neuroimaging findings in the assessment of SCI functional level. MEPs allows to monitor the changes in motor function and evaluate the effects of the different therapeutic approaches. ⋯ Some researchers have begun to therapeutically use repetitive TMS (rTMS) in patients with SCI. Initial studies revealed that rTMS can induce acute and short duration beneficial effects especially on spasticity and neuropathic pain, but the evidence is to date still very preliminary and well-designed clinical trials are warranted. This article is part of a Special Issue entitled SI: Spinal cord injury.