Brain research
-
We have previously shown that RB101, a dual inhibitor of enkephalin-degrading enzymes, decreased carrageenin-evoked c-Fos protein expression at the spinal cord level in awake rats. Moreover, we have also shown that c-Fos expression is a useful marker of the possible direct or indirect interactions between neural pathways, such as opioid and cholecystokinin systems. We now investigated the respective roles of the three main types of opioid receptors (mu, delta, or kappa) and their possible interactions, in the depressive effects of RB101 in inflammatory nociceptive conditions induced by intraplantar carrageenin (6 mg/150 microl of saline). ⋯ This effect was completely blocked by beta-FNA (10 mg/kg, i.v.), or NTI (1 mg/kg, i.v.). In contrast, BNI (2.5 mg/kg, i.v.) did not reverse the reducing effects of RB101(S) on carrageenin-evoked c-Fos protein expression. These results suggest that functional interactions occur between mu- and delta-opioid receptors in enkephalin-induced antinociceptive effects.
-
Comparative Study
RAGE is expressed in pyramidal cells of the hippocampus following moderate hypoxic-ischemic brain injury in rats.
The receptor for advanced glycation end products (RAGE) is a multi-ligand member of the immunoglobulin superfamily of cell surface molecules. The RAGE-ligand interaction has a putative role in a range of chronic disorders and is also known to contribute to both inflammatory/degenerative processes as well as regeneration in peripheral nerve injury. We have investigated the expression of RAGE in the moderate hypoxic-ischemic (HI) rat brain injury model in order to determine if this receptor is involved in the cellular perturbation mediated by ischemic stress. ⋯ A subset of cells was positive for cleaved Caspase-3, a marker for apoptosis. Together these data show that RAGE is expressed in dying neurons and suggest that RAGE may have a role in neuronal cell death mediated by ischemic stress. Identification of the ligand for RAGE in the ischemic brain may lead to a better understanding of RAGE-mediated cellular dysfunction in the CNS.
-
Comparative Study
Differential induction of c-fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-HT3 receptors.
Experimental animal models have been established to gain insight into the pathogenesis and the mechanisms of visceral hyperalgesia in the irritable bowel syndrome (IBS). However, data about the mechanisms and pathways involved in the induction of neuronal activity in forebrain and midbrain structures by a physiological GI stimulus, like colonic distension (CD), in the range from non-noxious to noxious intensities are scarce. Thus, the effect of proximal CD with non-noxious (10 mmHg) and noxious (40 and 70 mmHg) stimulus intensities on neuronal activity in brain nuclei, as assessed by c-fos expression, was established. ⋯ Activation of NTS neurons at such a condition seems to be partially mediated via capsaicin-sensitive vagal afferents and 5-HT(3) receptors. In contrast, activation of brain nuclei in the di- and telencephalon by nociceptive mechanical stimulation of the proximal colon, as assessed by c-fos expression, is partially mediated by capsaicin-sensitive, non-vagal afferents, and independent of neurotransmission via 5-HT(3) receptors. The modulation of CD-induced c-fos expression exclusively in the NTS by granisetron points to a role of 5-HT(3) receptor antagonists in the modulation of vago-vagal sensomotoric reflexes rather than an influence on forebrain nuclei involved in nociception.
-
Comparative Study
Diverse fibrillar peptides directly bind the Alzheimer's amyloid precursor protein and amyloid precursor-like protein 2 resulting in cellular accumulation.
The Alzheimer's disease Abeta peptide can increase the levels of cell-associated amyloid precursor protein (APP) in vitro. To determine the specificity of this response for Abeta and whether it is related to cytotoxicity, we tested a diverse range of fibrillar peptides including amyloid-beta (Abeta), the fibrillar prion peptides PrP106-126 and PrP178-193 and human islet-cell amylin. All these peptides increased the levels of APP and amyloid precursor-like protein 2 (APLP2) in primary cultures of astrocytes and neurons. ⋯ This was supported by decreased APP accumulation following extensive washing of the cultures to remove fibrillar aggregates. Pre-incubation of fibrillar peptide with recombinant APP18-146, the putative fibril binding site, also abrogated the accumulation of APP. These findings show that diverse fibrillogenic peptides can induce accumulation of APP and APLP2 and this mechanism could contribute to pathogenesis in neurodegenerative disorders.
-
Vascular dysfunction is important in the pathogenesis of peripheral complications of diabetes. However, the effects of diabetes on cerebral blood flow and the role of vascular deficits in the pathogenesis of diabetic encephalopathy are still unknown. The present study examined whether experimental diabetes is associated with reduced cerebral blood flow and whether treatment with enalapril can improve cerebral perfusion and function (blood flow and functional cerebral deficits). ⋯ Cerebral perfusion is reduced in diabetic rats compared to controls. Treatment aimed at the vasculature can improve cerebral blood flow, deficits in Morris maze performance and long term potentiation. These findings suggest that vasculopathy plays a role in the development of cerebral dysfunction in diabetic rats.