Brain research
-
Lactoferrin (LF) is a multifunctional protein that is found in milk, neutrophils, and other biological fluids. Although LF and the LF receptor have been identified in the central nervous system (CNS), the physiological role of LF remains unknown. We found that bovine milk-derived LF (BLF) reduces nociception in various pain models, as shown by the formalin test, hot plate test, and acetic acid writhing test in rats. ⋯ The antinociceptive effects of BLF were blocked by naloxone treatment, even though prostaglandin E(2) (PGE(2)) production in the ascites fluid that accumulated during the writhing test was not affected by BLF. Intrathecal (i.t.) application of BLF caused marked antinociceptive effects that were reversed by co-administration of a specific mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-NH(2) (CTOP), or by naloxone during the formalin test. We conclude that LF possesses mu-opioid receptor-mediated antinociceptive activity in the spinal cord.
-
Spinally administered muscarinic receptor agonists or acetylcholinesterase inhibitors can produce antinociception. However, the mechanisms of the action of cholinergic agents in the spinal cord are not fully understood. Activation of spinal muscarinic receptors evokes gamma-aminobutyric acid (GABA) release, which reduces the glutamatergic synaptic input to dorsal horn neurons through GABA(B) receptors. ⋯ Furthermore, the antiallodynic effect of intrathecal neostigmine and muscarine was largely eliminated by CGP55845 in diabetic rats. These data suggest that the GABA(B) receptors in the spinal cord mediate both the antinociceptive and antiallodynic actions of intrathecal muscarine or neostigmine in normal rats and in a rat model of diabetic neuropathic pain. This study provides new functional evidence that activation of spinal GABA(B) receptors is one of the important mechanisms underlying the antinociceptive action of intrathecal cholinergic agents.
-
Serotonin type 2 (5-HT(2)) receptors reportedly inhibit neuropathic pain in the spinal cord, but little is known about how spinal 5-HT(2) receptors might act against such abnormal sensitivity. We examined whether the cholinergic and tachykinin systems were involved in the antiallodynic effect of intrathecally administered 5-HT(2) receptor agonists in rats with nerve injury. Allodynia was produced by tight ligation of the left L5 and L6 spinal nerves, and determined by applying von Frey hairs to the left hindpaw. ⋯ Antiallodynic effects of 5-HT(2) receptor agonists were attenuated by the 5-HT(2A) receptor antagonist ketanserin (30 micro g), but not by the 5-HT(2C) receptor antagonist RS-102221 (40 micro g). Muscarinic receptor antagonists (30 micro g each), the choline uptake blocker (10 micro g), and the NK(1) receptor antagonist (30 micro g) also inhibited the antiallodynic effects of 5-HT(2) receptor agonists. Antiallodynic effects of intrathecally administered 5-HT(2) receptor agonists may be mediated by spinal release of acetylcholine induced via 5-HT(2A) and NK(1) receptors.
-
Naloxone and naloxone methiodide both act on opioid receptors but naloxone methiodide has limited access to the brain. Naloxone methiodide has been shown to have a lower affinity for opioid receptors than naloxone in the rat and guinea pig but has not been tested in the mouse. ⋯ Significant binding was observed for each receptor type and the binding affinity for naloxone versus naloxone methiodide was found to be 15:1 for mu, 6:1 for kappa and 330:1 for delta receptors. Therefore, naloxone methiodide does have a lower affinity for opioid receptors than naloxone in mouse brain tissue, which must be taken into consideration in experimental designs.
-
Tolerance to the stimulatory effects of cocaine on the hypothalamic-pituitary-adrenal (HPA) axis develops after chronic 'binge' cocaine exposure in the rat. This blunting of HPA axis activity in response to cocaine is associated with a cocaine-induced reduction of corticotropin-releasing hormone (CRH) mRNA level in the hypothalamus. There is limited information about the effects of withdrawal from chronic cocaine on HPA activity. ⋯ CRH mRNA levels in the hypothalamus were not different from saline controls on the 1st and 4th days of withdrawal. Taken together, the present results show that after development of adaptation or tolerance to chronic 'binge' cocaine there is an increase in HPA activity during acute cocaine withdrawal. In addition to being associated with CRH input from the hypothalamus, the activation of the HPA axis by cocaine withdrawal may be, at least in part, due to the increased POMC and/or CRH-R1 gene expression observed in the anterior pituitary after chronic 'binge' cocaine.