Brain research
-
We have demonstrated that pre-administered RB101 (40 mg/kg, i.v.), a mixed inhibitor of enkephalin-catabolizing enzymes, decreased spinal c-Fos expression induced 1 h and 30 min after intraplantar (i.pl.) carrageenin (41% reduction, p<0.01). These effects were completely blocked by pre-administered beta-funaltrexamine (10 mg/kg, i.v., 24 h prior to stimulation), a selective long-lasting mu-opioid receptor antagonist. In conclusion, these results clearly demonstrate that the effects of endogenous enkephalins on noxiously evoked spinal c-Fos expression are essentially mediated via mu-opioid receptors.
-
Electrical stimulation of the nucleus submedius (Sm) has been shown to suppress the viscerosomatic reflex (VSR), which is evoked by colorectal distension (CRD). We have examined the effects of focal electrical stimulation (0.3 ms, 50 Hz, 100 microA, 10 s) of the Sm and the periaqueductal gray (PAG) on the excitatory responses evoked by CRD in spinal dorsal horn neurons within the L6-S1 region in the urethane-anesthetized Wistar rats. Extracellular recordings were made from 32 spinal excitatory CRD responses. ⋯ Electrical stimulation in the majority of the sites in the Sm (19/28, 68%) did not affect spinal excitatory CRD responses. On the other hand, electrical stimulation of the PAG clearly inhibited 20 of 22 (90%) CRD excitatory responses. These results suggest that the majority of Sm neurons may suppress VSR activity at a supraspinal reflex center rather than via a descending inhibition of spinal visceral nociceptive transmission, as is the case for the PAG.
-
The effect of diabetes on the effect of diazepam on the propofol-induced loss of the righting reflex was investigated. There was no significant difference in the duration of the propofol-induced loss of the righting reflex between non-diabetic and diabetic mice. Diazepam increased the duration of the propofol-induced loss of the righting reflex in both diabetic and non-diabetic mice. ⋯ These effects were antagonized by the pretreatment with flumazenil. Pretreatment with FG7142, a benzodiazepine receptor inverse agonist, attenuated the duration of the propofol-induced loss of the righting reflex in non-diabetic mice, but not in diabetic mice. These results suggest that the attenuation of the diazepam-induced enhancement of the duration of the propofol-induced loss of the righting reflex in diabetic mice may be due to the dysfunction of benzodiazepine receptors.
-
Retracted Publication
Kynurenate attenuates the accumulation of diacylglycerol and free fatty acids after experimental brain injury in the rat.
This study examined the effects of the administration of kynurenate, a non-specific excitatory amino acid (EAA) receptor subtype antagonist, on the regional accumulation of diacylglycerol (DG) and free fatty acids (FFAs) after lateral fluid percussion (FP) brain injury in the rat. After brain injury of moderate severity (2.0 atm), rats were treated with either kynurenate (200 mg/kg, i.v.) or saline at 5 min after injury. In the saline-treated brain-injured rats, levels of all individual DG-fatty acids (palmitic, stearic, oleic and arachidonic acids) and total DG-fatty acids were increased in the ipsilateral left cortex and hippocampus at 30 min and 60 min after injury. ⋯ Kynurenate administration attenuated increases of all individual and total FFAs in the ipsilateral cortex and hippocampus either at 30 min alone or at both 30 min and 60 min after FP brain injury. In the contralateral cortex, levels of both DG-fatty acids and FFAs were not increased in the saline-treated injured rats and were also not affected by the administration of kynurenate. These results support the role of EAA receptor subtypes in the phospholipases-catalyzed formation of DG and FFAs in the ipsilateral cortex and hippocampus after lateral FP brain injury.
-
We report the characterization of a new class of glutamate uptake inhibitors isolated from Phoneutria nigriventer venom. Glutamate transport activity was assayed in rat cerebrocortical synaptosomes by using [(3)H]-L-glutamate. ⋯ The IC(50) value obtained was 2.35+/-0.9 microg/ml which is in the observed range reported for glutamate uptake blockers. Tx4-7, one of PhTx4 toxins, showed the strongest inhibitory activity (50.3+/-0.69%, n=3).