Brain research
-
The sex hormone progesterone has been shown to improve outcomes in animal models of a number of neurologic diseases, including traumatic brain injury, ischemia, spinal cord injury, peripheral nerve injury, demyelinating disease, neuromuscular disorders, and seizures. Evidence suggests it exerts its neuroprotective effects through several pathways, including reducing edema, improving neuronal survival, and modulating inflammation and apoptosis. ⋯ We then comment on the breadth of evidence for the use of progesterone in each neurologic disease family. Finally, we provide support for further human studies using progesterone to treat several neurologic diseases.
-
Progranulin (PGRN) haploinsufficiency accounts for up to 10% of frontotemporal lobe dementia. PGRN has also been implicated in neuroinflammation in acute and chronic neurological disorders. Here we report that both protein and mRNA levels of cortical and hippocampal PGRN are significantly enhanced following pilocarpine-induced status epilepticus. ⋯ However, with pilocarpine-induced status epilepticus, PGRN application significantly increases the number of CD11b(+) microglia/macrophages in the dentate gyrus, without affecting the extent of hilar cell death. In addition, the number of CD11b(+) microglia/macrophages induced by status epilepticus is not significantly different between PGRN knockout mice and wildtype. Our findings suggest that status epilepticus induces PGRN expression, and that PGRN potentiates but is not required for seizure-induced microglia/macrophage activation.
-
An increasing number of in vitro and in vivo studies suggest that anesthesia and surgery could be risk factors for later cognitive impairment in the young and aged brain. General anesthesia has been shown to impair spatial memory in rats and this performance is dependent on hippocampal function and postnatal hippocampal neurogenesis. Anesthetic induced alteration of one or more stages of postnatal hippocampal neurogenesis may in part explain this cognitive impairment following anesthesia. ⋯ However, propofol significantly decreased the number of differentiating neurons and increased the number of astrocytes in the DG of young, but not aged, rats. Isoflurane significantly decreased the number of maturing neurons and increased the number of astrocytes in the DG of aged, but not young, rats. Isoflurane and propofol anesthesia altered postnatal hippocampal neurogenesis in an age and agent dependent matter.
-
Sodium channel NaV1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function NaV1.7 mutations/variants have been identified in the painful disorders inherited erythromelalgia and small-fiber neuropathy (SFN). DRG neurons transfected with these channel variants display depolarized resting potential, reduced current-threshold, increased firing-frequency and spontaneous firing. ⋯ To assess the contribution of depolarized resting potential to DRG neuron excitability, we mimicked the mutant channel's depolarizing effect by current injection to produce equivalent depolarization; the depolarization decreased current threshold and increased firing-frequency. Voltage-clamp using ramp or repetitive action potentials as commands showed that D623N channels enhance the TTX-sensitive inward current, persistent at subthreshold membrane voltages, as predicted by a Hodgkin-Huxley model. Our results demonstrate that a variant of NaV1.7 associated with painful neuropathy depolarizes resting membrane potential and produces an enhanced inward current during interspike intervals, thereby contributing to DRG neuron hyperexcitability.
-
The deleterious effects of paradoxical sleep deprivation (SD) on memory processes are well documented. Physical exercise improves many aspects of brain functions and induces neuroprotection. In the present study, we investigated the influence of 4 weeks of treadmill aerobic exercise on both long-term memory and the expression of synaptic proteins (GAP-43, synapsin I, synaptophysin, and PSD-95) in normal and sleep-deprived rats. ⋯ Western blot analysis of the hippocampus revealed increased levels of GAP-43 in exercised rats. However, the expression of synapsin I, synaptophysin, and PSD-95 was not modified by either exercise or SD. Our results suggest that an aerobic exercise program can attenuate the deleterious effects of SD on long-term memory and that this effect is not directly related to changes in the expression of the pre- and post-synaptic proteins analyzed in the study.