Brain research
-
Alcohol consumption can have an impact on a variety of centrally-mediated functions of the nervous system, and some aspects of sensory perception can be altered as a result of long-term alcohol use. In order to assess the potential impact of alcohol intake on sensory information processing, metrics of sensory perception (simple and choice reaction time; static and dynamic threshold detection; amplitude discrimination with and without pre-exposure to conditioning stimulation) were tested in college-aged subjects (18 to 26 years of age) across a broad range of levels of alcohol consumption. ⋯ The results suggest that while some of the sensory perceptual metrics which are normally impacted in chronic alcoholism (e.g., reaction time and threshold detection) were relatively insensitive to change with increased alcohol consumption in young non-alcoholic individuals, other metrics, which are influenced predominantly by centrally-mediated mechanisms, demonstrate a deviation from normative values with increased consumption. Results of this study suggest that higher levels of alcohol consumption may be associated with alterations in centrally-mediated neural mechanisms in this age group.
-
The purpose of the present study was to examine how genetic variability in the promoter of the SLC6A4 gene encoding the serotonin transporter (5-HTT) may influence induction of long-term potentiation (LTP). The genotyping of the 53 healthy volunteers was performed by a combination of TaqMan assay and gel electrophoresis. Based on the transcription rates, the subjects were divided in 3 groups; 5-HTT SS, 5-HTT SL(G)/L(A)L(G)/SL(A) and 5-HTT L(A)L(A). ⋯ Also, the 9 individuals with the 5-HTT SS genotype reported more pain than individuals with 5-HTT SL(G)/L(A)L(G)/SL(A) genotype following HFS conditioning on mechanical pin-prick test stimuli. Thus, the present data show that induction of the perceptual correlate of human LTP is associated with the genetic variability in the gene encoding the 5-HTT. Taken together, this suggests that the expression of 5-HTT, may be important for induction of LTP in humans.
-
Cross-sensitization in the pelvis may contribute to etiology of functional pelvic pain disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increasing evidence suggests the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in the development of neurogenic inflammation in the pelvis and pelvic organ cross-sensitization. The objective of this study was to test the hypothesis that desensitization of TRPV1 receptors in the urinary bladder can minimize the effects of cross-sensitization induced by experimental colitis on excitability of bladder spinal neurons. ⋯ However, activation of TRPV1 receptors in the urinary bladder prior to acute colitis increased the number of bladder neurons receiving input from large somatic fields from 22.7% to 58.2% (p<0.01). The results of our study provide evidence that intravesical RTX reduces the effects of viscerovisceral cross-talk induced by colonic inflammation on bladder spinal neurons. However, RTX enhances the responses of bladder neurons to somatic stimulation, thereby limiting its therapeutic potential.
-
Despite significant advancements in the understanding of the pathophysiological mechanisms of subarachnoid hemorrhage (SAH), little is known about the emotional consequences. The primary goal of this study was to describe the locomotor and behavioral patterns in rats following both a single-injection and double-injection model of SAH. In 48 rats, SAH was induced by injecting 0.3 ml of autologous arterial blood into the cisterna magnum (single-hemorrhagic model). ⋯ Following both, a single and double-hemorrhagic models of SAH, rats were found to have significant behavioral abnormalities on the open field test, sucrose preference test, elevated plus maze test, and forced swimming test. A more prominent disability was found in rats that underwent the double-hemorrhagic model of SAH than rats that underwent the single-hemorrhagic model. Both a single and double injection model of rats SAH are associated with significant behavioral disturbances including locomotor abnormalities, depressive behavior and increased anxiety, even as early as 3 weeks after SAH.
-
Traumatic axonal injury (TAI), a feature of traumatic brain injury (TBI), progressively evolves over hours through impaired axonal transport and is thought to be a major contributor to cognitive dysfunction. In spite of various studies suggesting that pharmacologic or physiologic interventions might reduce TAI, clinical neuroprotective treatments are still unavailable. Edaravone, a free radical scavenger, has been shown to exert neuroprotective effects in animal models of several brain disorders. ⋯ With treatment 1h after impact, axonal injury was also significantly suppressed and this therapeutic effect persisted up to 6h after impact. Furthermore, behavioral tests performed 9 days after injury showed memory deficits in saline-treated traumatized mice, which were not evident in the edaravone-treated group. These results suggest that edaravone protects against memory deficits following TBI and that this protection is mediated by suppression of TAI and oxidative stress.