Brain research
-
Previous studies showed the role of basolateral amygdala (BLA) in cannabinoid-induced antinociception. Furthermore, the nucleus accumbens (NAc) plays an important role in mediating the suppression of pain in animal models. The present study extended the role of dopamine receptors within the NAc in antinociceptive effect of cannabinoid receptor agonist, WIN55,212-2, microinjected into the BLA following the tail-flick and formalin tests in rats. ⋯ Our findings showed that intra-accumbal SCH-233909 dose-dependently prevented antinociception induced by intra-BLA administration of WIN55,212-2 (15 μg/rat) in time set intervals in formalin, but not tail-flick test. Besides, administration of sulpiride in the NAc could affect WIN-induced analgesia in both models of pain. In conclusion, it seems that D2 receptors located in the NAc, in part, mediate the antinociceptive responses of cannabinoid within the BLA, while D1 receptors only are involved in modulation of persistent inflammatory model of pain.
-
Craving is an important factor in relapse to drug abuse, and cue-induced craving is an especially powerful form of this construct. Neuroimaging methods have been utilized to study drug cue-induced craving and neural correlates in the human brain. However, very few studies have focused on characterizing craving and the neural responses to heroin-related cues in short-term abstinent heroin-dependent patients. ⋯ The abstinence duration correlated positively with brain activation in the left caudate and right parahippocampal gyrus. In conclusion, the cue-reactivity paradigm significantly activated neural responses in the mesolimbic dopamine (DA) system and prefrontal cortex (PFC) and induced increased craving in short-term abstinent heroin-dependent patients. We suggest that these response patterns characterize the high vulnerability of relapse in short-term abstinent heroin-dependent subjects.
-
Our previous study has shown that activating peripheral μ-receptors is necessary for switching the bronchopulmonary C-fibers (PCFs)-mediated rapid shallow breathing (RSB) into an apnea by systemic administration of fentanyl. The brainstem nuclei, such as the medial nucleus tractus solitarius (mNTS) and the pre-Botzinger complex (PBC), are required for completing the PCF-mediated respiratory reflexes. Moreover, these areas contain abundant μ-receptors and their activation prolongs expiratory duration (T(E)). Thus, we asked if central μ-receptors, especially those in the mNTS and PBC, are involved in fully expressing this RSB-apnea switch by fentanyl. In anesthetized rats, the cardiorespiratory responses to right atrial injection of phenylbiguanide (PBG, 3-6μg/kg) were repeated after: (1) fentanyl (iv), a μ-receptor agonist, alone (8μg/kg, iv); (2) fentanyl following microinjection of naloxone methiodide (NXM, an opioid receptor antagonist) into the cisterna magna (10μg/4μl); (3) the bilateral mNTS (10mM, 20nl); or (4) PBC (10mM, 20nl). Our results showed that PBG shortened T(E) by 37±6% (RSB, from 0.41±0.05 to 0.26±0.03s, P<0.01), but it markedly prolonged T(E) by 5.8-fold (an apnea, from 0.50±0.04s to 2.9±0.57s, P<0.01) after fentanyl (iv). Pretreatment with NXM injected into the cisterna magna or the PBC, but not the mNTS, prevented the fentanyl-induced switch. This study, along with our previous results mentioned above, suggests that although peripheral μ-receptors are essential for triggering the fentanyl-induced switch, central μ-receptors, especially those in the PBC, are required to fully exhibit such switch. ⋯ Our results suggest that the activation of central μ-receptors, especially those in the pre-Botzinger complex, is required for switching the pulmonary C-fiber-mediated rapid shallow breathing into an apnea by systemic administration of fentanyl.
-
Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. ⋯ Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-κB activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway.
-
We examined whether somatosensory activity could be modulated by the observation of bodily experiences. For this purpose, somatosensory-evoked potentials elicited by non-painful stimulation were recorded when subjects were viewing a hand penetrated by a needle, touched by a cotton swab or at resting without stimulation. ⋯ Moreover, enhanced P50 amplitudes during observation of both pain and touch in others were associated with increased unpleasant ratings induced by the video clips, as well as with high scores in a perspective taking scale (IRI). These findings provide support for the involvement of an attentional bottom-up mechanism which could be responsible to enhance sensory processing of somatic information when observing bodily experiences in others irrespective of whether they are painful or not.