Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Feb 2009
TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase.
We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. ⋯ In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.
-
Biochem. Biophys. Res. Commun. · Feb 2009
Isoflurane and desflurane at clinically relevant concentrations induce amyloid beta-peptide oligomerization: an NMR study.
Current understanding on Alzheimer's disease (AD) reveals that soluble amyloid beta-peptide (Abeta) oligomeric formation plays an important role in AD pathophysiology. A potential role for several inhaled anesthetics in promoting Abeta oligomer formation has been suggested. ⋯ Isoflurane and desflurane induce Abeta oligomerization by inducing chemical shift changes of the critical amino acid residues (G29, A30, and I31), reinforcing the evidence that perturbation of these three crucial residues indeed plays an important role in oligomerization. These findings support the emerging hypothesis that several commonly used inhaled anesthetics could be involved in neurodegeneration, as well as risk factor for accelerating the onset of AD.