Brain : a journal of neurology
-
Sensory polyneuropathies are the most frequent neurological complication of human immunodeficiency virus (HIV) infection. Distal symmetric polyneuropathy (DSP), associated with HIV infection, is characterized by length-dependent axonal degeneration of sensory fibres. In rodent dorsal root ganglia (DRG) cultures, HIV viral envelope protein gp120 results in neurotoxicity and axonal degeneration. ⋯ In conclusion, we propose a novel pathway of axonal degeneration mediated by gp120 that is dependent on local activation of caspases in the axon. This observation suggests that axonal protection is a relevant therapeutic target for HIV-associated sensory neuropathy. Furthermore, chemokine receptor inhibitors, which are currently being developed as HIV entry inhibitor drugs, may also have a therapeutic role in HIV-associated peripheral neuropathies by preventing axonal degeneration.
-
Cognitive function requires a high level of functional interaction between regions of a network supporting cognition. Assuming that brain activation changes denote an advanced state of disease progression, changes in functional connectivity may precede changes in brain activation. The objective of this study was to investigate changes in functional connectivity of the right middle fusiform gyrus (FG) in subjects with mild cognitive impairment (MCI) during performance of a face-matching task. ⋯ The putative presence of Alzheimer's disease neuropathology in MCI affects functional connectivity from the right middle FG to the visual areas and medial frontal areas. In addition, higher linear correlation in the MCI group in the parietal lobe may indicate the initial appearance of compensatory processes. The results demonstrate that functional connectivity can be an effective marker for the detection of changes in brain function in MCI subjects.