Brain : a journal of neurology
-
Sleep-wake disturbances (SWD) are common after traumatic brain injury (TBI). In acute TBI, we recently found decreased CSF levels of hypocretin-1, a wake-promoting neurotransmitter. In the present study, we aimed to delineate the frequency and clinical characteristics of post-traumatic SWD, to assess CSF hypocretin-1 levels 6 months after TBI, and to identify risk factors for posttraumatic SWD. ⋯ In almost one out of two patients, post-traumatic SWD appear to be directly related to the TBI. An involvement of the hypocretin system in the pathophysiology of post-traumatic SWD appears possible. Other risk factors predisposing towards the development of post-traumatic SWD were not identified.
-
Spontaneous intracranial hypotension (SIH) is caused by leakage of CSF, and characterized on MRI by brain sagging, dilatation of veins and dural sinuses, subdural fluid collections and post-contrast enhancement of the thickened dura. A few cases may present a very severe brain sagging through the tentorial notch and swelling of the diencephalic-mesencephalic structures, with absent or scarce subdural collections and post-contrast enhancement. These patients may have surprisingly few neurological signs or may become drowsy and even lapse into coma due to central herniation. ⋯ It was, however, grossly decreased in patients with brain swelling (group D, 40.7 degrees +/- 12.8 degrees, mean +/- SD, range 22-61 degrees), P < 0.001 for comparison with groups E and C. As suggested by previous studies, downward stretching of the vG and narrowing of the vG/SS angle may cause a functional stenosis at the vG-SS junction. We suggest that in the application of the Monro-Kellie doctrine to SIH, the brain volume should not be considered as always invariable.
-
We have previously performed detailed clinical and neuropsychological assessments in a community-based cohort of patients with newly diagnosed parkinsonism, and through analysis of a subcohort with idiopathic Parkinson's disease (PD), we have demonstrated that cognitive dysfunction occurs even at the time of PD diagnosis and is heterogeneous. Longitudinal follow-up of the cohort has now been performed to examine the evolution of cognitive dysfunction within the early years of the disease. One hundred and eighty (79%) eligible patients from the original cohort with parkinsonism were available for re-assessment at between 3 and 5 years from their initial baseline assessments. ⋯ However, the most important clinical predictors of global cognitive decline following correction for age were neuropsychological tasks with a more posterior cortical basis, including semantic fluency and ability to copy an intersecting pentagons figure, as well as a non-tremor dominant motor phenotype at the baseline assessment. This work clarifies the profile of cognitive dysfunction in early PD and demonstrates that the dementing process in this illness is heralded by both postural and gait dysfunction and cognitive deficits with a posterior cortical basis, reflecting probable non-dopaminergic cortical Lewy body pathology. Furthermore, given that these predictors of dementia are readily measurable within just a few minutes in a clinical setting, our work may ultimately have practical implications in terms of guiding prognosis in individual patients.
-
Chronic bilateral subthalamic stimulation leads to a spectacular clinical improvement in patients with motor complications. However, the post-operative body weight gain involved may limit the benefits of surgery and induce critical metabolic disorders. Twenty-four Parkinsonians (61.1 +/- 1.4 years) were examined 1 month before (M - 1) and 3 months after (M + 3) surgery. ⋯ Normalization of energy metabolism after DBS-STN implantation may favour body weight gain, of which quality was gender specific. As men gained primarily fat-free mass, a reasonable weight gain may be tolerated, in contrast with women who gained only fat. Other factors such as changes in free-living physical activity may help to limit body weight gain in some patients.
-
Functional MRI during face matching shows activation of the ventral visual stream, including the ventral temporal lobes and fusiform gyrus. In contrast, a location-matching task activates the dorsal visual stream, compromising parietal lobe areas. The morphological basis of the functional coupling between brain regions may be related to the distribution of neuron numbers and neuropil density, but has not yet been demonstrated in the living human brain. ⋯ Compared to controls, MCI patients had more pronounced positive correlations in the ventral temporal lobes and more pronounced negative correlations in the parietal lobes. Our data suggest that fusiform activation is positively correlated with cortical grey matter density of brain areas belonging to the ventral visual stream and negatively correlated with grey matter density of brain areas belonging to the dorsal visual stream and that, these effects are more pronounced in MCI patients than in controls. These findings support the notion that the functional segregation within the visual system is based on the distribution of cortical grey matter volumes, possibly reflecting the spatial distribution of neuron density.