Brain : a journal of neurology
-
Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. ⋯ Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered.
-
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) that is thought to be caused by a combination of genetic and environmental factors. To date, considerable evidence has associated Epstein-Barr virus (EBV) infection with disease development. However, it remains controversial whether EBV infects multiple sclerosis brain and contributes directly to CNS immunopathology. ⋯ Furthermore, EBV was not detected in our second cohort of multiple sclerosis specimens by in situ hybridization. However, our real-time PCR methodologies, which were capable of detecting very few EBV infected cells, detected EBV at low levels in only 2 of the 12 multiple sclerosis meningeal specimens examined. Our finding that CNS EBV infection was rare in multiple sclerosis brain indicates that EBV infection is unlikely to contribute directly to multiple sclerosis brain pathology in the vast majority of cases.
-
Charcot-Marie-Tooth type 1A is the most prevalent hereditary demyelinating polyneuropathy. The aim of this study was to investigate the natural history of the disease in adults during a 5-year follow-up and to compare the changes over time with those found in normal ageing. In a cohort of 46 adult Charcot-Marie-Tooth type 1A patients, impairments and physical disability were scored at baseline and at 1, 3 and 5 years. ⋯ None of the other assessed baseline characteristics, i.e. age, gender, compound muscle action potential amplitude and motor nerve conduction velocity, predicted the extent of deterioration of muscle strength or physical disability. In adult Charcot-Marie-Tooth type 1A patients, the decline in axonal function and in muscle strength may reflect, to a considerable extent, a process of normal ageing. The slow increase in physical disability in adulthood may well be explained by decreased reserves and compensatory mechanisms together with progression of skeletal deformations due to muscle weakness.
-
White matter tracts, which play a crucial role in the coordination of information flow between different regions of grey matter, are particularly vulnerable to multiple sclerosis. Many studies have shown that the white matter lesions in multiple sclerosis are associated with focal abnormalities of grey matter, but little is known about the alterations in the coordinated patterns of cortical morphology among regions in the disease. Here, we used cortical thickness measurements from structural magnetic resonance imaging to investigate the relationship between the white matter lesion load and the topological efficiency of structural cortical networks in multiple sclerosis. ⋯ Moreover, regional efficiency was also significantly decreased in specific brain regions, including the insula and precentral gyrus as well as regions of prefrontal and temporal association cortices. Finally, we showed that the lesions also altered many cortical thickness correlations in the frontal, temporal and parietal lobes. Our results suggest that the white matter lesions in multiple sclerosis might be associated with aberrant neuronal connectivity among widely distributed brain regions, and provide structural (morphological) evidence for the notion of multiple sclerosis as a disconnection syndrome.
-
Charcot-Marie-Tooth disease type 1A is the most common inherited neuropathy and is caused by duplication of chromosome 17p11.2 containing the peripheral myelin protein-22 gene. This disease is characterized by uniform slowing of conduction velocities and secondary axonal loss, which are in contrast with non-uniform slowing of conduction velocities in acquired demyelinating disorders, such as chronic inflammatory demyelinating polyradiculoneuropathy. Mechanisms responsible for the slowed conduction velocities and axonal loss in Charcot-Marie-Tooth disease type 1A are poorly understood, in part because of the difficulty in obtaining nerve samples from patients, due to the invasive nature of nerve biopsies. ⋯ Our study demonstrates that skin biopsy can reveal pathological and molecular architectural changes that distinguish inherited from acquired demyelinating neuropathies. Uniformly shortened internodal length in Charcot-Marie-Tooth disease type 1A suggests a potential developmental defect of internodal lengthening. Intra-axonal accumulation of mitochondria provides new insights into the pathogenesis of axonal degeneration in Charcot-Marie-Tooth disease type 1A.