Brain : a journal of neurology
-
Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson's disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson's disease in the general population. ⋯ In conclusion, glucocerebrosidase mutations are associated with reductions in glucosylceramidase activity and evidence of oxidative stress. Ambroxol treatment significantly increases glucosylceramidase activity and reduces markers of oxidative stress in cells bearing glucocerebrosidase mutations. We propose that ambroxol hydrochloride should be further investigated as a potential treatment for Parkinson's disease.
-
Multicenter Study
Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment.
Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. ⋯ The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
-
Seizures are common among critically ill children, but their relationship to outcome remains unclear. We sought to quantify the relationship between electrographic seizure burden and short-term neurological outcome, while controlling for diagnosis and illness severity. Furthermore, we sought to determine whether there is a seizure burden threshold above which there is an increased probability of neurological decline. ⋯ Our observation that a seizure burden of more than 12 min in a given hour was strongly associated with neurological decline suggests that early antiepileptic drug management is warranted in this population, and identifies this seizure burden threshold as a potential therapeutic target. These findings support the hypothesis that electrographic seizures independently contribute to brain injury and worsen outcome. Our results motivate and inform the design of future studies to determine whether more aggressive seizure treatment can improve outcome.
-
Previously, we reported that one individual who had a motor complete, but sensory incomplete spinal cord injury regained voluntary movement after 7 months of epidural stimulation and stand training. We presumed that the residual sensory pathways were critical in this recovery. ⋯ We show that neuromodulation of the sub-threshold motor state of excitability of the lumbosacral spinal networks was the key to recovery of intentional movement in four of four individuals diagnosed as having complete paralysis of the legs. We have uncovered a fundamentally new intervention strategy that can dramatically affect recovery of voluntary movement in individuals with complete paralysis even years after injury.