Brain : a journal of neurology
-
The autosomal dominant spinocerebellar ataxias (SCAs) consist of a highly heterogeneous group of rare movement disorders characterized by progressive cerebellar ataxia variably associated with ophthalmoplegia, pyramidal and extrapyramidal signs, dementia, pigmentary retinopathy, seizures, lower motor neuron signs, or peripheral neuropathy. Over 41 different SCA subtypes have been described evidencing the high clinical and genetic heterogeneity. We previously reported a novel spinocerebellar ataxia type subtype, SCA37, linked to an 11-Mb genomic region on 1p32, in a large Spanish ataxia pedigree characterized by ataxia and a pure cerebellar syndrome distinctively presenting with early-altered vertical eye movements. ⋯ No significant neuropathological alterations were identified in other brain regions in agreement with a pure cerebellar syndrome. Importantly, we found that the ATTTC repeat mutation dysregulated DAB1 expression and induced an RNA switch resulting in the upregulation of reelin-DAB1 and PI3K/AKT signalling in the SCA37 cerebellum. This study reveals the unstable ATTTC repeat mutation within the DAB1 gene as the underlying genetic cause and provides evidence of reelin-DAB1 signalling dysregulation in the spinocerebellar ataxia type 37.
-
Ventral intermediate thalamic deep brain stimulation is a standard therapy for the treatment of medically refractory essential tremor and tremor-dominant Parkinson's disease. Despite the therapeutic benefits, the mechanisms of action are varied and complex, and the pathophysiology and genesis of tremor remain unsubstantiated. This intraoperative study investigated the effects of high frequency microstimulation on both neuronal firing and tremor suppression simultaneously. ⋯ The subsequent inhibition of neuronal activity was likely due to synaptic fatigue. Thalamic neuronal inhibition seems necessary for tremor reduction and may function in effect as a thalamic filter to uncouple thalamo-cortical from cortico-spinal reflex loops. Additionally, our findings shed light on the gating properties of the ventral intermediate nucleus within the cerebello-thalamo-cortical tremor network, provide insight for the optimization of deep brain stimulation technologies, and may inform controlled clinical studies for assessing optimal target locations for the treatment of tremor.