International journal of medical informatics
-
According to the World Health Organization (WHO), over 130 million people are in constant need of humanitarian assistance due to natural disasters, disease outbreaks, and conflicts, among other factors. These health crises can compromise the resilience of healthcare systems, which are essential for achieving the health objectives of the sustainable development goals (SDGs) of the United Nations (UN). During a humanitarian health crisis, rapid and informed decision making is required. This is often challenging due to information scarcity, limited resources, and strict time constraints. Moreover, the traditional approach to digital health development, which involves a substantial requirement analysis, a feasibility study, and deployment of technology, is ill-suited for many crisis contexts. The emergence of Web 2.0 technologies and social media platforms in the past decade, such as Twitter, has created a new paradigm of massive information and misinformation, in which new technologies need to be developed to aid rapid decision making during humanitarian health crises. ⋯ The feasibility of using AI to extract valuable information during a humanitarian health crisis is proven in many cases. There is a lack of research on how to integrate the use of AI into the work-flow and large-scale deployments of humanitarian aid during a health crisis.
-
The progress of the Millennium Development Goals (MDGs) shows that sustained global action can achieve success. Despite the unprecedented achievements in health and education, more than one billion people, many of them in conflict-affected areas, were unable to reap the benefits of the MDG gains. The recently developed Sustainable Development Goals (SDGs) are even more ambitious then their predecessor. SDG 3 prioritizes health and well-being for all ages in specific areas such as maternal mortality, communicable diseases, mental health, and healthcare workforce. However, without a shift in the approach used for conflict-affected areas, the world's most vulnerable people risk being left behind in global development yet again. We must engage in meaningful discussions about employing innovative strategies to address health challenges fragile, low-resource, and often remote settings. In this paper, we will argue that to meet the ambitious health goals of SDG 3, digital health can help to bridge healthcare gaps in conflict-affected areas. ⋯ The SDGS are complex, ambitious, and comprehensive; even in the most stable environments, achieving full completion towards every goal will be difficult, and in conflict-affected environments, this challenge is much greater. By engaging in a collaborative framework and using the appropriate digital health tools, we can support humanitarian efforts to realize sustained progress in SDG 3 outcomes.
-
Randomized Controlled Trial
Improving resident's skills in the management of circulatory shock with a knowledge-based e-learning tool.
Correct clinical management of circulatory shock in emergency departments (ER) and intensive care units (ICU) is critical. In this context, the transmission of professional skills by means of the practical supervision of real cases at the point of care entails important issues that can be widely overcome with the use of computer knowledge-based e-learning tools. ⋯ Web-oriented knowledge-based e-learning computer tools such as Shock-Instructor can significantly reduce the learning time of ER and ICU residents, while enhancing their assimilation of evidence-based medicine and both the survival rate and health condition of patients with shock.
-
To conduct a usability study exploring the value of using speech recognition (SR) for clinical documentation tasks within an electronic health record (EHR) system. ⋯ The usability of EHR systems with any input modality is an area that requires continued development. The addition of an SR component to an EHR system may cause a significant reduction in terms of perceived usability by clinicians.
-
To build and curate a linkable multi-centre database of high resolution longitudinal electronic health records (EHR) from adult Intensive Care Units (ICU). To develop a set of open-source tools to make these data 'research ready' while protecting patient's privacy with a particular focus on anonymisation. ⋯ The CCHIC database is now in use by health care researchers from academia and industry. The 'research ready' suite of data preparation tools have facilitated access, and linkage to national databases of secondary care is underway.