British journal of anaesthesia
-
Review Meta Analysis
Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis.
Nerve blocks improve postoperative analgesia, but their benefits may be short-lived. This quantitative review examines whether perineural dexmedetomidine as a local anaesthetic (LA) adjuvant for neuraxial and peripheral nerve blocks can prolong the duration of analgesia compared with LA alone. All randomized controlled trials (RCTs) comparing the effect of dexmedetomidine as an LA adjuvant to LA alone on neuraxial and peripheral nerve blocks were reviewed. Sensory block duration, motor block duration, block onset times, analgesic consumption, time to first analgesic request, and side-effects were analysed. ⋯ were combined using random-effects modelling. A total of 516 patients were analysed from nine RCTs. Five trials investigated dexmedetomidine as part of spinal anaesthesia and four as part of a brachial plexus (BP) block. Sensory block duration was prolonged by 150 min [95% confidence interval (CI): 96, 205, P<0.00001] with intrathecal dexmedetomidine. Perineural dexmedetomidine used in BP block may prolong the mean duration of sensory block by 284 min (95% CI: 1, 566, P=0.05), but this difference did not reach statistical significance. Motor block duration and time to first analgesic request were prolonged for both intrathecal and BP block. Dexmedetomidine produced reversible bradycardia in 7% of BP block patients, but no effect on the incidence of hypotension. No patients experienced respiratory depression. Dexmedetomidine is a potential LA adjuvant that can exhibit a facilitatory effect when administered intrathecally as part of spinal anaesthesia or peripherally as part of a BP block. However, there are presently insufficient safety data to support perineural dexmedetomidine use in the clinical setting.
-
Elective surgery is usually preceded by preoperative diagnostics to minimize risk. The results are assumed to elicit preventive measures or even cancellation of surgery. Moreover, physicians perform preoperative tests as a baseline to detect subsequent changes. ⋯ There is no evidence derived from high-quality studies that supports routine preoperative testing in healthy adults undergoing non-cardiac surgery. Testing according to pathological findings in a patient's medical history or physical examination seems justified, although the evidence is scarce. High-quality studies, especially large randomized controlled trials, are needed to explore the effectiveness of indicated preoperative testing.
-
Non-invasive ventilation (NIV) has become a common treatment for acute and chronic respiratory failure. In comparison with conventional invasive mechanical ventilation, NIV has the advantages of reducing patient discomfort, procedural complications, and mortality. However, NIV is associated with frequent uncomfortable or even life-threatening adverse effects, and patients should be thoroughly screened beforehand to reduce potential severe complications. ⋯ All major NIV complications are potentially life-threatening and can occur in any patient, but are strongly correlated with the degree of pulmonary and cardiovascular involvement. Minor complications can be related to specific structural features of NIV interfaces or to variable airflow patterns. This extensive review of the literature shows that careful selection of patients and interfaces, proper setting of ventilator modalities, and close monitoring of patients from the start can greatly reduce NIV complications.
-
It is unclear what factors affect the uptake of sevoflurane administered through the membrane oxygenator during cardiopulmonary bypass (CPB) and whether this can be monitored via the oxygenator exhaust gas. ⋯ The uptake of sevoflurane delivered via the membrane oxygenator during CPB seems to be affected by hypothermia, haemodilution, and changes in the oxygenator fresh gas supply flow. Measuring the concentration of sevoflurane in the exhaust from the oxygenator is not useful for monitoring sevoflurane administration during bypass.
-
Isoflurane can increase pro-inflammatory cytokine interleukin (IL)-6 levels. However, the up-stream mechanism remains unknown. Nuclear factor-kappa B (NF-κB) promotes the generation of pro-inflammatory cytokines. We examined the effects of isoflurane and sevoflurane on the NF-κB signalling pathway and its association with IL-6 levels in cultured cells. ⋯ These studies in H4 cells suggest that the NF-κB signalling pathway could contribute to isoflurane or sevoflurane-induced neuroinflammation. This could lead to the targeted intervention of anaesthetic-induced neuroinflammation.