Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial Clinical Trial
G-CSF and IL-8 for early diagnosis of sepsis in neonates and critically ill children - safety and cost effectiveness of a new laboratory prediction model: study protocol of a randomized controlled trial [ISRCTN91123847].
Bacterial infection represents a serious risk in neonates and critically ill paediatric patients. Current clinical practice is characterized by frequent antibiotic treatment despite low incidence of true infection. However, some patients escape early diagnosis and progress to septic shock. Many new markers, including cytokines, have been suggested to improve decision making, but the clinical efficacy of these techniques remains uncertain. Therefore, we will test the clinical efficacy of a previously validated diagnostic strategy to reduce antibiotic usage and nosocomial infection related morbidity. ⋯ This trial will ascertain the clinical efficacy of introducing new diagnostic strategies consisting of pre-test probability estimate, novel laboratory markers, and computer-generated post-test probability in infectious disease work up in critically ill newborns and children.
-
Microcirculatory perfusion is disturbed in sepsis. Recent research has shown that maintaining systemic blood pressure is associated with inadequate perfusion of the microcirculation in sepsis. Microcirculatory perfusion is regulated by an intricate interplay of many neuroendocrine and paracrine pathways, which makes blood flow though this microvascular network a heterogeneous process. ⋯ Therapy in shock is aimed at the optimization of cardiac function, arterial hemoglobin saturation and tissue perfusion. This will mean the correction of hypovolemia and the restoration of an evenly distributed microcirculatory flow and adequate oxygen transport. A practical clinical score for the definition of shock is proposed and a novel technique for bedside visualization of the capillary network is discussed, including its possible implications for the treatment of septic shock patients with vasodilators to open the microcirculation.
-
There has been renewed interest in quantifying acid-base disorders in the intensive care unit. One of the methods that has become increasingly used to calculate acid-base balance is the Stewart model. This model is briefly discussed in terms of its origin, its relationship to other methods such as the base excess approach, and the information it provides for the assessment and treatment of acid-base disorders in critically ill patients.
-
Critical care physicians may benefit from immediate access to medical reference material. We evaluated the feasibility and potential benefits of a handheld computer based knowledge access system linking a central academic intensive care unit (ICU) to multiple community-based ICUs. ⋯ An updateable handheld computer system is feasible as a means of point-of-care access to medical reference material and may improve clinical decision making. However, during the study, acceptance of the system was variable. Improved training and new technology may overcome some of the barriers we identified.
-
Few studies evaluating the epidemiology of critical illness have used strict population-based designs that exclude subjects external to the base population. The objective of this study was to evaluate the potential effects of inclusion of nonresidents in population-based studies in intensive care. ⋯ This study provides information on the incidence of and demographic risk factors for admission to ICUs in a defined population. Inclusion of patients that are nonresident in base study populations may lead to gross errors in determination of the occurrence and outcomes of critical illness.