Critical care : the official journal of the Critical Care Forum
-
Acute lung injury (ALI) is a complex and devastating illness, often occurring within the setting of sepsis, and carries an annual mortality rate of 30-50%. Although the genetic basis of ALI has not been fully established, an increasing body of evidence suggests that genetic predisposition contributes to disease susceptibility and severity. Significant difficulty exists, however, in defining the exact nature of these genetic factors, including large phenotypic variance, incomplete penetrance, complex gene-environment interactions, and strong potential for locus heterogeneity. ⋯ Extensive gene expression profiling studies in animal models of ALI (rat, murine, canine), as well as in humans, were performed to identify potential candidate genes http://www.hopkins-genomics.org/. We identified a number of candidate genes for ALI, with blood coagulation and inflammation gene ontologies being the most highly represented. The candidate gene approach coupled with extensive gene profiling and novel bioinformatics approaches is a valuable way to identify genes that are involved in ALI.
-
Acute lung injury is associated with accumulation of extravascular lung water (EVLW). The aim of the present study was to compare two methods for quantification of EVLW: transpulmonary single thermodilution (EVLWST) and postmortem gravimetric (EVLWG). ⋯ In sheep, EVLW determined using transpulmonary single thermodilution correlates closely with gravimetric measurements over a wide range of changes. However, transpulmonary single thermodilution overestimates EVLW as compared with postmortem gravimetry.
-
To be able to diagnose and treat sepsis better it is important not only to improve the knowledge about definitions and pathophysiology, but also to gain more insight into specialists' perception of, and attitude towards, the current diagnosis and treatment of sepsis. ⋯ There is a general awareness about the inadequacy of the current definitions of sepsis. Physicians caring for patients with sepsis recognise the difficulty of defining and diagnosing sepsis and are aware that they miss the diagnosis frequently.
-
Comment
Attending to the lightness of numbers: toward the understanding of critical care epidemiology.
Most of the epidemiological studies in critical care do not express their results in terms of population burden of critical illness. This happens because the population at risk of critical illness is particularly difficult to estimate, once intensive care units (ICUs) receive patients from many sources. The study by Laupland in this issue of Critical Care provides a good estimate of the incidence of admission to ICUs in the Calgary Health Region. ⋯ There is tremendous variability in decisions to admit a patient to the ICU and the epidemiology of critical care is influenced by them in a subtle but inextricable way. An understanding of the population epidemiology of critical illness and the use of the ICU, the variations in these parameters, and factors that influence this variation is extremely important. The notable effect of a changing numerator on the estimation of the population burden of ICU admissions in the study by Laupland illustrates how fluid our estimates of disease incidence and mortality - the mainstays of epidemiology - can be.
-
Resuscitation of critically ill patients with trauma or sepsis continues to challenge clinicians. Early imperatives include diagnostic judgment as to the presenting problem - sepsis or trauma. ⋯ Shortcomings of current approaches to determining the adequacy of circulatory resuscitation have prompted the evaluation of new technologies purported to directly assess microcirculatory flow as a clinical endpoint for the adequacy of resuscitation. While early studies are intriguing, this technology requires much more study before it can be considered for widespread adoption by the clinician.