Critical care : the official journal of the Critical Care Forum
-
Vasoplegia is a ubiquitous phenomenon in all advanced shock states, including septic, cardiogenic, hemorrhagic, and anaphylactic shock. Its pathophysiology is complex, involving various mechanisms in vascular smooth muscle cells such as G protein-coupled receptor desensitization (adrenoceptors, vasopressin 1 receptors, angiotensin type 1 receptors), alteration of second messenger pathways, critical illness-related corticosteroid insufficiency, and increased production of nitric oxide. This review, based on a critical appraisal of the literature, discusses the main current treatments and future approaches. ⋯ While norepinephrine is confirmed as first line therapy for the treatment of vasoplegia, the latest Surviving Sepsis Campaign guidelines also consider that the best therapeutic management of vascular hyporesponsiveness to vasopressors could be a combination of multiple vasopressors, including norepinephrine and early prescription of vasopressin. This new approach is seemingly justified by the need to limit adrenoceptor desensitization as well as sympathetic overactivation given its subsequent deleterious impacts on hemodynamics and inflammation. Finally, based on new pathophysiological data, two potential drugs, selepressin and angiotensin II, are currently being evaluated.
-
Review
Feasibility and reliability of frailty assessment in the critically ill: a systematic review.
For healthcare systems, an ageing population poses challenges in the delivery of equitable and effective care. Frailty assessment has the potential to improve care in the intensive care setting, but applying assessment tools in critical illness may be problematic. The aim of this systematic review was to evaluate evidence for the feasibility and reliability of frailty assessment in critical care. ⋯ CRD42016052073 .
-
Review Meta Analysis
Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis.
In clinical practice, oxygen is generally administered to patients with the intention of increasing oxygen delivery. Supplemental oxygen may, however, cause arterial hyperoxia, which is associated with hemodynamic alterations. We performed a systematic review and meta-analysis of the literature to determine the effect of hyperoxia on central hemodynamics and oxygen delivery in healthy volunteers and cardiovascular-compromised patients. ⋯ Hyperoxia may considerably decrease cardiac output and increase systemic vascular resistance, but effects differ between patient categories. Heart failure patients were the most sensitive while no hemodynamic effects were seen in septic patients. There is currently no evidence supporting the notion that oxygen supplementation increases oxygen delivery.
-
Pulmonary inflammation and vascular leakage are hallmarks of acute respiratory distress syndrome (ARDS), a life-threatening condition, for which there is no specific pharmacologic treatment. Recent literature suggests that leaky vessels in pulmonary infection and ARDS may be mediated through dysregulation of a non-redundant endothelial control pathway, the Tie2 receptor and its ligands, the angiopoietins. This Viewpoint summarizes results from cell-based experiments, animal models and clinical studies underlining the potential of Tie2 targeted interventions in reducing infection-mediated pulmonary hyperpermeability.
-
Multicenter Study Observational Study
Prognosis of patients excluded by the definition of septic shock based on their lactate levels after initial fluid resuscitation: a prospective multi-center observational study.
Septic shock can be defined both by the presence of hyperlactatemia and need of vasopressors. Lactate levels should be measured after volume resuscitation (as per the Sepsis-3 definition). However, currently, no studies have evaluated patients who have been excluded by the new criteria for septic shock. The aim of this study was to determine the clinical characteristics and prognosis of these patients, based on their lactate levels after initial fluid resuscitation. ⋯ It seems reasonable for septic shock to be defined by the lactate levels after volume resuscitation. However, owing to the small number of patients in whom lactate levels were improved, further study is warranted.