Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial
Xenon treatment after severe traumatic brain injury improves locomotor outcome, reduces acute neuronal loss and enhances early beneficial neuroinflammation: a randomized, blinded, controlled animal study.
Traumatic brain injury (TBI) is a major cause of morbidity and mortality, but there are no clinically proven treatments that specifically target neuronal loss and secondary injury development following TBI. In this study, we evaluate the effect of xenon treatment on functional outcome, lesion volume, neuronal loss and neuroinflammation after severe TBI in rats. ⋯ Our findings demonstrate that xenon improves functional outcome and reduces neuronal loss after brain trauma in rats. Neuronal preservation was associated with a xenon-induced enhancement of microglial cell numbers and astrocyte activation, consistent with a role for early beneficial neuroinflammation in xenon's neuroprotective effect. These findings suggest that xenon may be a first-line clinical treatment for brain trauma.
-
Randomized Controlled Trial
Understanding the neuroprotective effect of tranexamic acid: an exploratory analysis of the CRASH-3 randomised trial.
The CRASH-3 trial hypothesised that timely tranexamic acid (TXA) treatment might reduce deaths from intracranial bleeding after traumatic brain injury (TBI). To explore the mechanism of action of TXA in TBI, we examined the timing of its effect on death. ⋯ Tranexamic acid reduces early deaths in non-moribund TBI patients regardless of TBI severity or country income. The effect of tranexamic acid in patients with isolated TBI is similar to that in polytrauma. Treatment is safe and even severely injured patients appear to benefit when treated soon after injury.
-
Randomized Controlled Trial
Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial.
Myoglobin clearance in acute kidney injury requiring renal replacement therapy is important because myoglobin has direct renal toxic effects. Clinical data comparing different modalities of renal replacement therapy addressing myoglobin clearance are limited. This study aimed to compare two renal replacement modalities regarding myoglobin clearance. ⋯ Myoglobin clearance using continuous veno-venous hemodialysis with high cutoff dialyzer and regional citrate anticoagulation is better than that with continuous veno-venous hemodiafiltration with regional citrate anticoagulation.