Critical care : the official journal of the Critical Care Forum
-
At the bedside, assessing the risk of ventilator-induced lung injury (VILI) requires parameters readily measured by the clinician. For this purpose, driving pressure (DP) and end-inspiratory static 'plateau' pressure ([Formula: see text]) of the tidal cycle are unquestionably useful but lack key information relating to associated volume changes and cumulative strain. 'Mechanical power', a clinical term which incorporates all dissipated ('non-elastic') and conserved ('elastic') energy components of inflation, has drawn considerable interest as a comprehensive 'umbrella' variable that accounts for the influence of ventilating frequency per minute as well as the energy cost per tidal cycle. ⋯ Here we describe how-if only in concept-the bedside clinician might gauge the theoretical hazard of delivered energy using easily observed static circuit pressures ([Formula: see text] and positive end expiratory pressure) and an estimate of the maximally tolerated (threshold) non-dissipated ('elastic') airway pressure that reflects the pressure component applied to the alveolar tissues. Because its core inputs are already in use and familiar in daily practice, the simplified mathematical model we propose here for damaging energy and power may promote deeper comprehension of the key factors in play to improve lung protective ventilation.
-
Use of extracorporeal membrane oxygenation (ECMO) in cardiopulmonary resuscitation, termed eCPR, offers the prospect of improving survival with good neurological function after cardiac arrest. After death, ECMO can also be used for enhanced preservation of abdominal and thoracic organs, designated normothermic regional perfusion (NRP), before organ recovery for transplantation. To optimize resuscitation and transplantation outcomes, healthcare networks in Portugal and Italy have developed cardiac arrest protocols that integrate use of eCPR with NRP. ⋯ This paper delineates the most pressing relevant ethical considerations and proposes recommendations for implementation of protocols that aim to promote public trust and reduce conflicts of interest. Transparent policies should rely on protocols that separate lifesaving from organ preservation considerations; robust, centralized eCPR data to inform equitable and evidence-based allocations; uniform practices concerning clinical decision-making and resource utilization; and partnership with community stakeholders, allowing patients to make decisions about emergency care that align with their values. Proactively addressing these ethical and logistical challenges could enable eCPR dissemination and integration with NRP protocols in the USA, with the potential to maximize lives saved through both improved resuscitation with good neurological outcomes and increased organ donation opportunities when resuscitation is unsuccessful or not in accordance with individuals' wishes.
-
For decades, one of the main targets in the management of severe acute brain injury (ABI) has been intracranial hypertension (IH) control. However, the determination of IH has suffered variations in its thresholds over time without clear evidence for it. Meanwhile, progress in the understanding of intracranial content (brain, blood and cerebrospinal fluid) dynamics and recent development in monitoring techniques suggest that targeting intracranial compliance (ICC) could be a more reliable approach rather than guiding actions by predetermined intracranial pressure values. ⋯ Therefore, an intracranial compartmental syndrome (ICCS) can occur with deleterious brain effects, precipitating a reduction in brain perfusion, thereby inducing brain ischemia. The present perspective review aims to discuss the ICCS concept and suggest an integrative model for the combination of modern invasive and noninvasive techniques for IH and ICC assessment. The theory and logic suggest that the combination of multiple ancillary methods may enhance ICC impairment prediction, pointing proactive actions and improving patient outcomes.
-
Meta Analysis
Tracheostomy timing and outcome in critically ill patients with stroke: a meta-analysis and meta-regression.
Stroke patients requiring mechanical ventilation often have a poor prognosis. The optimal timing of tracheostomy and its impact on mortality in stroke patients remains uncertain. We performed a systematic review and meta-analysis of tracheostomy timing and its association with reported all-cause overall mortality. Secondary outcomes were the effect of tracheostomy timing on neurological outcome (modified Rankin Scale, mRS), hospital length of stay (LOS), and intensive care unit (ICU) LOS. ⋯ In this meta-analysis of over 17,000 critically ill stroke patients, the timing of tracheostomy was not associated with mortality, neurological outcomes, or ICU/hospital LOS.