Neuromodulation : journal of the International Neuromodulation Society
-
Objectives. The probability of success with spinal cord stimulation (SCS) depends largely on appropriate patient selection. Here, we have assessed the predictive value of pain etiology as it relates to pain relief with SCS as part of a prospective multicenter clinical trial. Methods. Sixty-five subjects with chronic and intractable pain tested an epidural SCS system. ⋯ No predictive value of pain etiology was observed. Conclusions. Spinal cord stimulation is an effective therapy for neuropathic pain arising from a variety of causes. Failed back surgery syndrome, complex regional pain syndrome, and pain of other etiologies responded equally well to SCS.
-
Objective. This study assessed 3-Tesla magnetic resonance imaging (MRI) issues for a programmable infusion pump and associated catheters. Methods. A programmable infusion pump and associated catheters (MedStream Programmable Infusion Pump, 40 mL; SureStream TI Coil-Reinforced Intraspinal Catheter; SureStream TI Connector; and SureStream Silicone Catheter; Codman and Shurtleff Inc., a Johnson & Johnson Company, Raynham, MA, USA) underwent evaluation for magnetic field interactions (deflection angle and torque), heating (transmit/receive body radiofrequency coil; whole-body averaged specific absorption rate, 3 W/kg for 15 min), functional changes (before and after MRI using eight different MRI conditions), and artifacts (T1-weighted spin-echo and gradient-echo pulse sequences) at 3-Tesla. Results. The programmable infusion pump and associated catheters exhibited minor magnetic field interactions. ⋯ Artifacts were relatively large for the pump and minor for the catheter. Conclusions. The programmable infusion pump and catheters will not pose increased risk to a patient examined using 3-Tesla MRI as long as specific safety guidelines are followed, which includes interrogation of the pump post-MRI to ensure proper settings. Artifacts for the programmable infusion pump may impact the diagnostic use of MRI if the area of interest is in the same area or near the device.
-
Objectives. This paper describes an experimental investigation of variable frequency stimulation patterns as a means of increasing torque production and, hence, performance in cycling induced by functional electrical stimulation. Materials and Methods. Experiments were conducted on six able-bodied subjects stimulating both quadriceps during isokinetic trials. Constant-frequency trains (CFT) with 50-msec interpulse intervals and four catchlike-inducing trains (CIT) were tested. ⋯ Conclusions. The use of CITs improves the functional electrical stimulation cycling performance compared with CFT stimulation. This application might have a relevant clinical importance for individuals with stroke where the residual sensation is still present and thus the maximization of the performance without an excessive increase of the stimulation intensity is advisable. Therefore, exercise intensity can be increased yielding a better muscle strength and endurance that may be beneficially for later gait training in individuals with stroke.
-
Objectives. Motor cortex stimulation has been used as a treatment for intractable pain. However, the mechanisms underlying its effects remain unclear. In this study, neuroplasticity induced by chronic sensorimotor cortex stimulation was investigated experimentally on the basis of c-Fos expression. ⋯ We examined the neural activation in response to chronic stimulation using c-Fos immunopositivity. Results. The results are as follows: 1) c-Fos was significantly expressed immediately after the stimulation compared with that in the control; 2) c-Fos expression became extensive over the various regions with an increase in stimulation duration; and 3) after two months of stimulation, c-Fos was expressed not only on the stimulation side, but also within the contralateral cerebral hemisphere. Conclusions. Changes in c-Fos expression induced by long-term stimulation indicate the existence of a time-dependent neural plasticity.
-
Objective. The aim of our work was to investigate whether lateral stimulation of the spinal cord, lateral cord stimulation (LCS), results in inhibition of the spastic phenomena of upper motor lesions in an animal model. Methods. This study was conducted using an animal model consisting of surgically brain damaged pigs subjected to unilateral cortical and subcortical brain lesions. ⋯ Results. Experiments in 12 animals showed a significant increase of threshold after LCS, with a marked posteffect, signaling a less abnormal threshold. Conclusions. This experiment demonstrated that LCS produces threshold increases to abolish abnormally propagated electromyographic evoked responses induced by the electrical stimulation of the fourth lumbar root in pigs with experimental cortical and subcortical brain lesions.