Neuromodulation : journal of the International Neuromodulation Society
-
Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). ⋯ Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits.
-
Deep Brain Stimulation (DBS) is an established adjunctive surgical intervention for treating Parkinson's disease (PD) motor symptoms. Both surgical targets, the globus pallidus interna (GPi) and subthalamic nucleus (STN), appear equally beneficial when treating motor symptoms but effects on nonmotor symptoms are not clear. Lower urinary tract symptoms (LUTS) are a common PD complaint. Given prior data in STN-DBS, we aimed to further explore potential benefits in LUTS in both targets. ⋯ In PD patients with moderate LUTS, there were notable improvements in QOL for LUTS post DBS in the total sample and STN target. There may be differences in DBS effects on LUTS between targets but this will require further larger, blinded studies.
-
Deep Brain Stimulation (DBS) is an established adjunctive surgical intervention to treat poorly controlled motor symptoms in Parkinson's disease (PD). Both surgical targets (the subthalamic nucleus and globus pallidus) have proven equally efficacious in treating motor symptoms but unique differences may exist in effects on nonmotor symptoms. Sleep dysfunction, a common disabling symptom in PD, has only been examined directly in the subthalamic target, demonstrating some beneficial changes in sleep quality. We aimed to explore sleep changes after pallidal stimulation; hypothesizing similar benefits would be seen. ⋯ In this small pilot trial, pallidal DBS failed to demonstrate statistically significant improvements in sleep metrics postimplantation but did reveal improving trends in several PSG measures including sleep efficiency and latency to sleep onset as well as sleep survey scores. A larger, blinded clinical trial is needed to more definitively determine whether pallidal DBS may benefit sleep.
-
Spinal cord stimulation (SCS) is not typically recommended for the treatment of central poststroke pain (CPSP). We examined whether the pharmacological evaluation of CPSP is useful for selecting the candidates for SCS. ⋯ We speculate that the pharmacological evaluation of CPSP patients can be a useful tool for selecting candidates for SCS.