Neuromodulation : journal of the International Neuromodulation Society
-
Randomized Controlled Trial
Clinical Outcomes of 1 kHz Subperception Spinal Cord Stimulation in Implanted Patients With Failed Paresthesia-Based Stimulation: Results of a Prospective Randomized Controlled Trial.
Pain relief via spinal cord stimulation (SCS) has historically revolved around producing paresthesia to replace pain, with success measured by the extent of paresthesia-pain overlap. In a recent murine study, by Shechter et al., showed the superior efficacy of high frequency SCS (1 kHz and 10 kHz) at inhibiting the effects of mechanical hypersensitivity compared to sham or 50 Hz stimulation. In the same study, authors report there were no differences in efficacy between 1 kHz and 10 kHz delivered at subperception stimulation strength (80% of motor threshold). Therefore, we designed a randomized, 2 × 2 crossover study of low frequency supra-perception SCS vs. subperception SCS at 1 kHz frequency in order to test whether subperception stimulation at 1 kHz was sufficient to provide effective pain relief in human subjects. ⋯ Out of 22 subjects that completed the study, 21 subjects (95%) reported improvements in average, best, and worst pain NPRS scores. All NPRS scores were significantly lower with subperception stimulation compared to paresthesia-based stimulation (p < 0.01, p < 0.05, and p < 0.05, respectively). As with NPRS scores, the treatment effect of subperception stimulation was significantly greater than that of paresthesia based stimulation on ODI scores (p = 3.9737 × 10(-5) ) and PGIC scores (p = 3.0396 × 10(-5) ).
-
Spinal cord stimulation (SCS) is rapidly expanding therapy for the treatment of refractory neuropathic pain. Although technical issues such as battery life and lead migration have been well studied and improved, little is known about the incidence and management of inadvertent dural puncture and consequent headache. ⋯ Dural puncture during SCS device placement and can result in a PDPH that is severe and refractory to conservative modes of therapy. Even in the presence of hardware, EBP performed with meticulous aseptic technique was found to be safe and efficacious.
-
Relative to the number of patients suffering chronic lumbar and cervical pain, fewer patients suffer persistent thoracic pain. Consequently there is less literature, with smaller sample sizes, reporting treatment of this cohort. Here, we assess peripheral nerve field stimulation (PNfS) as a potential treatment for chronic thoracic pain. ⋯ PNfS is an effective intervention for intractable disabling thoracic pain, offering sustained and worthwhile pain relief, for the overwhelming majority of the cohort. This may be especially true when considering a combined treatment approach of PNfS and analgesic use to manage remnant pain.
-
Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). ⋯ Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits.