Neuromodulation : journal of the International Neuromodulation Society
-
Conventional dorsal column spinal cord stimulation (SCS) provides less than optimal pain relief for certain pain syndromes and anatomic pain distributions. Practitioners have sought to treat these challenging therapeutic areas with stimulation of alternate intraspinal targets. ⋯ Clinical use of intraspinal neurostimulation is expanding at a very fast pace. Intraspinal stimulation of non-dorsal column targets may well be the future of neurostimulation as it provides new clinically significant neuromodulation of specific therapeutic targets that are not well or not easily addressed with conventional dorsal column SCS. In addition, they may avoid undesired stimulation induced paraesthesia, particularly in non-painful areas of the body.
-
Conventional dorsal column spinal cord stimulation (SCS) provides less than optimal pain relief for certain pain syndromes and anatomic pain distributions. Practitioners have sought to treat these challenging therapeutic areas with stimulation of alternate intraspinal targets. ⋯ Clinical use of intraspinal neurostimulation is expanding at a very fast pace. Intraspinal stimulation of non-dorsal column targets may well be the future of neurostimulation as it provides new clinically significant neuromodulation of specific therapeutic targets that are not well or not easily addressed with conventional dorsal column SCS. In addition, they may avoid undesired stimulation induced paraesthesia, particularly in non-painful areas of the body.
-
Spinal cord stimulation (SCS) is routinely used for intractable pain syndromes. For SCS to be efficacious the painful area needs to be covered by SCS induced paresthesia symptoms. Recently, novel stimulation designs have been developed for spinal cord stimulation (SCS) that are superior to classical spinal cord stimulation and exert their effects without the mandatory paresthesia. Two such stimulation designs are burst stimulation and 10 kHz stimulation. ⋯ Human clinical data, simulation studies, quantitative sensory testing, cellular investigations, and comparative animal and human studies all point in the same direction, namely that 10 kHz and burst SCS might both modulate the medial pain pathway, and could be fundamentally similar neurostimulation designs.