Neuromodulation : journal of the International Neuromodulation Society
-
The extent to which short interval intracortical inhibition (SICI) responds to low-frequency repetitive transcranial magnetic stimulation (rTMS) remains inconclusive with reports of increased, decreased and unchanged response following modulation. The aim of this study was to systematically investigate if the variability of SICI following rTMS is explained by the interstimulus interval (ISI) and/or the conditioning stimulus intensity (CSI). ⋯ The optimal ISI or CSI did not shift or reveal SICI changes after inhibitory rTMS. However, when the whole curve of SICI responses were evaluated from a wide range of ISIs, a decrease in inhibition was found. The contrast between the results of individual ISI tests and the wide range of ISI assessment may be due to higher intersubject variability of SICI and/or sample size, rendering traditional SICI testing methods ineffective for measuring changes in inhibition. Further, it is possible that rTMS modulates GABAA and GABAB mediated inhibitory processes differently, which would explain the conflicting results for SICI and cSP.
-
To explore the efficacy of remotely-supervised transcranial direct current stimulation (RS-tDCS) paired with cognitive training (CT) exercise in participants with multiple sclerosis (MS). ⋯ These initial findings indicate benefit for RS-tDCS paired with CT in MS. Exploratory analyses indicate that the earliest tDCS cognitive benefit is seen in complex attention and response variability. Telerehabilitation using RS-tDCS combined with CT may lead to improved outcomes in MS.
-
Transcranial direct current stimulation (tDCS) is gaining growing importance in the treatment of neurological and psychiatric disorders and is currently investigated for home-based and remotely supervised applications. ⋯ Further research needs to focus on home-based treatment from different viewpoints, that is, safety, technical monitoring, reproducibility of repeated applications, feasibility of combined interventions and systematic assessment of efficacy, and safety in large randomized controlled clinical trials (RCTs). However, remotely controlled and supervised tDCS for home use represents a promising approach for widespread use of noninvasive brain stimulation (NIBS) in clinical care.
-
To assess if transcranial direct current stimulation (tDCS) produces a temperature change at the skin surface, if any change is stimulation polarity (anode or cathode) specific, and the contribution of passive heating (joule heat) or blood flow on such change. ⋯ Taken together, our results indicate a moderate and nonhazardous increase in temperature at the skin surface during 2 mA tDCS that is independent of polarity, and results from stimulation induced blood flow rather than joule heat.