Neuromodulation : journal of the International Neuromodulation Society
-
The extent to which short interval intracortical inhibition (SICI) responds to low-frequency repetitive transcranial magnetic stimulation (rTMS) remains inconclusive with reports of increased, decreased and unchanged response following modulation. The aim of this study was to systematically investigate if the variability of SICI following rTMS is explained by the interstimulus interval (ISI) and/or the conditioning stimulus intensity (CSI). ⋯ The optimal ISI or CSI did not shift or reveal SICI changes after inhibitory rTMS. However, when the whole curve of SICI responses were evaluated from a wide range of ISIs, a decrease in inhibition was found. The contrast between the results of individual ISI tests and the wide range of ISI assessment may be due to higher intersubject variability of SICI and/or sample size, rendering traditional SICI testing methods ineffective for measuring changes in inhibition. Further, it is possible that rTMS modulates GABAA and GABAB mediated inhibitory processes differently, which would explain the conflicting results for SICI and cSP.
-
Transcranial direct current stimulation (tDCS) is gaining growing importance in the treatment of neurological and psychiatric disorders and is currently investigated for home-based and remotely supervised applications. ⋯ Further research needs to focus on home-based treatment from different viewpoints, that is, safety, technical monitoring, reproducibility of repeated applications, feasibility of combined interventions and systematic assessment of efficacy, and safety in large randomized controlled clinical trials (RCTs). However, remotely controlled and supervised tDCS for home use represents a promising approach for widespread use of noninvasive brain stimulation (NIBS) in clinical care.
-
To assess if transcranial direct current stimulation (tDCS) produces a temperature change at the skin surface, if any change is stimulation polarity (anode or cathode) specific, and the contribution of passive heating (joule heat) or blood flow on such change. ⋯ Taken together, our results indicate a moderate and nonhazardous increase in temperature at the skin surface during 2 mA tDCS that is independent of polarity, and results from stimulation induced blood flow rather than joule heat.
-
High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. ⋯ The greater O2 Hbint "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications.