Neuromodulation : journal of the International Neuromodulation Society
-
Spinal cord stimulation (SCS) has become a common treatment modality for chronic pain of various etiologies. Over the past two decades, significant technological evolution has occurred in the SCS space, and this includes high-frequency (10 kHz) stimulation. Level I evidence exists reporting superiority of 10 kHz SCS over traditional SCS, however, conflicting reports have been published. The primary objective was to report site-collected real-world patient reported percentage improvement in pain scale (PR-PIPS) with traditional SCS and 10 kHz SCS from a single, academic medical center. ⋯ This study adds further evidence to the published literature that successful long-term results can be achieved with SCS. Our retrospective analysis did not find a statistically significant difference in PR-PIPS between traditional stimulation and high-frequency stimulation in a variety of indications over an average follow-up of nearly two years. Notably, there were statistically significant differences in treatment indications and primary sites of pain between the two patient cohorts, and this should be considered when interpreting the results.
-
Randomized Controlled Trial
Effect of Anodic Transcranial Direct Current Stimulation Combined With Speech Language Therapy on Nonfluent Poststroke Aphasia.
Transcranial direct current stimulation (tDCS) facilitates or inhibits spontaneous neuronal activity by low-intensity current. In this study, we evaluated the effects of tDCS and sham stimulation combined with speech language therapy (SLT) on nonfluent poststroke aphasia (PSA) patients. ⋯ Our results suggest that left inferior gyrus frontalis anodic transcranial direct current stimulation is an effective adjuvant to conventional speech language therapy for patients with nonfluent PSA.
-
Transcranial electrical stimulation (tES) is a promising tool for modulating neural activity, but tES has poor penetrability and spatiotemporal resolution compared to invasive techniques like deep brain stimulation (DBS). Interferential strategies for alternating-current stimulation (IF-tACS) and pulsed/intersectional strategies for transcranial direct-current stimulation (IS-tDCS) address some of the limitations of tES, but the comparative advantages and disadvantages of these new techniques is not well understood. This study's objective was to evaluate the suprathreshold and subthreshold membrane dynamics of neurons in response to IF-tACS and IS-tDCS. ⋯ Enhancing the spatiotemporal precision and penetrability of tES with interferential and intersectional strategies is possible at the human scale. However, IF-tACS or IS-tDCS will likely require spatial multiplexing with multiple simultaneous sources to counteract their reduced potency, compared to standard techniques, to maintain stimulation currents at tolerable levels.
-
The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. ⋯ Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
-
A proposed replay of memory traces between the hippocampus and frontal cortical brain areas during sleep is of high relevance for overnight memory consolidation. Recently, we demonstrated that bi-frontal anodal transcranial direct current stimulation (tDCS) prior to sleep increases waking EEG gamma power and decreases total sleep time during the night. It is unclear whether this effect on cortical excitability has an influence on overnight memory consolidation. We hypothesized that bi-frontal evening tDCS interferes with overnight memory consolidation with a polarity specific impairment following anodal tDCS. ⋯ The application of tDCS can be considered safe regarding overnight memory consolidation and represents a promising treatment approach in conditions of decreased vigilance and arousal.