Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2021
Randomized Controlled TrialLow-dose droperidol suppresses transcranial electrical motor-evoked potential amplitude: a retrospective study.
Low-dose droperidol has been widely used as an antiemetic during and after surgery. Although high-dose droperidol affects motor-evoked potential, the effects of low-dose droperidol on motor-evoked potential amplitude are unclear. The aim of this study was to investigate whether low-dose droperidol affects motor-evoked potential amplitude. ⋯ Motor-evoked potential amplitude was suppressed by low-dose droperidol. During intraoperative motor-evoked potential monitoring in spine surgery, anesthesiologists should pay careful attention to the timing of administration of droperidol, even at low doses. Based on the results of this study, we are conducting a randomized controlled trial.
-
J Clin Monit Comput · Feb 2021
Randomized Controlled TrialAssessment of the benefits of head-up preoxygenation using near-infrared spectroscopy with pulse oximetry in a swine model.
Compared with supine positioning, head-up positioning improves preoxygenation and prolongs the time to oxygen desaturation. We reevaluated benefits of head-up positioning using near-infrared spectroscopy (NIRS) with pulse oximetry in a pig model. Six pigs (mean ± SD weight: 25.3 ± 0.6 kg) were anesthetized with isoflurane and evaluated in four positions-supine, head-up, head-down, head-up to supine-just before apnea (positions' order after "supine" was randomized). ⋯ Although the TOI was not associated with the positions during normovolemia, the head-up position during hypovolemia decreased TOI from 62% ± 6% (supine) to 50% ± 9% (head-up; P = 0.0019) before preoxygenation, and it remained low during apnea. The head-up position improves preoxygenation, but repositioning to supine negates the benefits. Head-up positioning during evident hypovolemia should be avoided because the cerebral oxygenation could decrease.
-
J Clin Monit Comput · Dec 2020
Randomized Controlled TrialShortening of the twitch stabilization period by tetanic stimulation in acceleromyography in infants, children and young adults (STSTS-Study): a prospective randomised, controlled trial.
Acceleromyography is characterised by an increase of the twitch response T1 (first twitch of the train-of-four [TOF]) during first 30 min of monitoring known as the staircase phenomenon. In adults the staircase phenomenon can be avoided by tetanic prestimulation. This study examined, if tetanic prestimulation eliminates the staircase phenomenon in children. ⋯ Tetanic prestimulation prevents the staircase phenomenon in these age groups. The stability of the TOFR reading confirms its value to monitor neuromuscular function over time. Registration: The study was registered as NCT02552875 on Clinical Trials.gov on July 29, 2014.
-
J Clin Monit Comput · Dec 2020
Randomized Controlled TrialHypotension Prediction Index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty: a single centre feasibility randomised blinded prospective interventional trial.
The "Hypotension Prediction Index (HPI)" represents a newly introduced monitoring-tool that aims to predict episodes of intraoperative hypotension (IOH) before their occurrence. In order to evaluate the feasibility of protocolized care according to HPI monitoring, we hypothesized that HPI predicts the incidence of IOH and reduces the incidence and duration of IOH. This single centre feasibility randomised blinded prospective interventional trial included at total of 99 patients. ⋯ Same observations were identified for absolute (HPI: 0 (0-140) s, CTRL: 640 (195-1315) s, hCTRL 660 (180-1440) s; p < 0.001) and relative duration of hypotensive episodes (minutes MAP ≤ 65 mmHg in % of total anaesthesia time; HPI: 0 (0-1), CTRL: 6 (2-12), hCTRL 7 (2-17); p < 0.001). The HPI algorithm combined with a protocolized treatment was able to reduce the incidence and duration of hypotensive events in patients undergoing primary hip arthroplasty. Trial registration: NCT03663270.
-
J Clin Monit Comput · Dec 2020
Randomized Controlled TrialHierarchical Poincaré analysis for anaesthesia monitoring.
Although the degree of dispersion in Poincaré plots of electroencephalograms (EEG), termed the Poincaré-index, detects the depth of anaesthesia, the Poincaré-index becomes estranged from the bispectral index (BIS) at lighter anaesthesia levels. The present study introduces Poincaré-index20-30 Hz, targeting the 20- to 30-Hz frequency, as the frequency range reported to contain large electromyogram (EMG) portions in frontal EEG. We combined Poincaré-index20-30 Hz with the conventional Poincaré-index0.5-47 Hz using a deep learning technique to adjust to BIS values, and examined whether this layered Poincaré analysis can provide an index of anaesthesia level like BIS. ⋯ We then evaluated the trained MLPNN model using the test dataset, by comparing the measured BIS (mBIS) with BIS predicted from the model (PredBIS). The relationship between mBIS and PredBIS using the two Poincaré-indices showed a tight linear regression equation: mBIS = 1.00 × PredBIS + 0.15, R = 0.87, p < 0.0001, root mean square error (RMSE) = 7.09, while the relationship between mBIS and PredBIS simply using the original Poincaré-index0.5-47 Hz was weaker (R = 0.82, p < 0.0001, RMSE = 7.32). This suggests the 20- to 30-Hz hierarchical Poincaré analysis has potential to improve on anaesthesia depth monitoring constructed by simple Poincaré analysis.