Journal of clinical monitoring and computing
-
J Clin Monit Comput · Apr 2017
ReviewJournal of Clinical Monitoring and Computing 2016 end of year summary: respiration.
This paper reviews 16 papers or commentaries published in Journal of Clinical Monitoring and Computing in 2016, within the field of respiration. Papers were published covering peri- and post-operative monitoring of respiratory rate, perioperative monitoring of CO2, modeling of oxygen gas exchange, and techniques for respiratory monitoring.
-
J Clin Monit Comput · Apr 2017
ReviewA sneak peek into digital innovations and wearable sensors for cardiac monitoring.
Many mobile phone or tablet applications have been designed to control cardiovascular risk factors (obesity, smoking, sedentary lifestyle, diabetes and hypertension) or to optimize treatment adherence. Some have been shown to be useful but the long-term benefits remain to be demonstrated. Digital stethoscopes make easier the interpretation of abnormal heart sounds, and the development of pocket-sized echo machines may quickly and significantly expand the use of ultrasounds. ⋯ They have the potential to change the way we monitor and treat patients with cardiovascular diseases in the hospital and beyond. Some may have the ability to improve quality of care, decrease the number of medical visits and hospitalization, and ultimately health care costs. Validation and outcome studies are needed to clarify, among the growing number of digital innovations and wearable sensors, which tools have real clinical value.
-
J Clin Monit Comput · Feb 2017
ReviewJournal of Clinical Monitoring and Computing 2016 end of year summary: cardiovascular and hemodynamic monitoring.
The assessment and optimization of cardiovascular and hemodynamic variables is a mainstay of patient management in the care for critically ill patients in the intensive care unit (ICU) or the operating room (OR). It is, therefore, of outstanding importance to meticulously validate technologies for hemodynamic monitoring and to study their applicability in clinical practice and, finally, their impact on treatment decisions and on patient outcome. In this regard, the Journal of Clinical Monitoring and Computing (JCMC) is an ideal platform for publishing research in the field of cardiovascular and hemodynamic monitoring. In this review, we highlight papers published last year in the JCMC in order to summarize and discuss recent developments in this research area.
-
J Clin Monit Comput · Feb 2017
ReviewReproducibility of transpulmonary thermodilution cardiac output measurements in clinical practice: a systematic review.
Measuring cardiac output (CO) is an integral part of the diagnostic and therapeutic strategy in critically ill patients. During the last decade, the single transpulmonary thermodilution (TPTD) technique was implemented in clinical practice. The purpose of this paper was to systematically review and critically assess the existing data concerning the reproducibility of CO measured using TPTD (COTPTD). ⋯ Achieving more than 3 boluses did not improve reproducibility; however, achieving less than 3 boluses significantly affects the reproducibility of this technique. The present results emphasize that TPTD is a highly reproducible technique for monitoring CO in critically ill patients, especially in the pediatric population. Our findings suggest that obtaining a mean of 3 measurements for determining CO values is recommended.
-
J Clin Monit Comput · Feb 2017
ReviewReproducibility of transpulmonary thermodilution cardiac output measurements in clinical practice: a systematic review.
Measuring cardiac output (CO) is an integral part of the diagnostic and therapeutic strategy in critically ill patients. During the last decade, the single transpulmonary thermodilution (TPTD) technique was implemented in clinical practice. The purpose of this paper was to systematically review and critically assess the existing data concerning the reproducibility of CO measured using TPTD (COTPTD). ⋯ Achieving more than 3 boluses did not improve reproducibility; however, achieving less than 3 boluses significantly affects the reproducibility of this technique. The present results emphasize that TPTD is a highly reproducible technique for monitoring CO in critically ill patients, especially in the pediatric population. Our findings suggest that obtaining a mean of 3 measurements for determining CO values is recommended.