Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2013
ReviewShedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies.
Normal mitochondrial function in the process of metabolic energy production is a key factor in maintaining cellular activities. Many pathological conditions in animals, as well as in patients, are directly or indirectly related to dysfunction of the mitochondria. Monitoring the mitochondrial activity by measuring the autofluorescence of NADH has been the most practical approach since the 1950s. ⋯ These studies were the basis for the development of clinical monitoring devices as presented in accompanying article. The encouraging experimental results in animals stimulated us to apply the same technology in patients after technological adaptations as described in the accompanying article. Our medical device was approved for clinical use by the FDA.
-
J Clin Monit Comput · Oct 2012
ReviewHemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference.
The difference between mixed venous blood carbon dioxide tension (PvCO(2)) and arterial carbon dioxide tension (PaCO(2)), called ∆PCO(2) has been proposed to better characterize the hemodynamic status. It depends on the global carbon dioxide (CO(2)) production, on cardiac output and on the complex relation between CO(2) tension and CO(2) content. ⋯ The difference between central venous CO(2) tension and arterial CO(2) tension, which is easy to obtain can substitute for ∆PCO(2) to assess the adequacy of cardiac output. Differences between local tissue CO(2) tension and arterial CO(2) tension can also be obtained and provide data on the adequacy of local blood flow to the local metabolic conditions.
-
Assessment of the hemodynamics and volume status is an important daily task for physicians caring for critically ill patients. There is growing consensus in the critical care community that the "traditional" methods-e.g., central venous pressure or pulmonary artery occlusion pressure-used to assess volume status and fluid responsiveness are not well supported by evidence and can be misleading. Our purpose is to provide here an overview of the knowledge needed by ICU physicians to take advantage of mechanical cardiopulmonary interactions to assess volume responsiveness. ⋯ We discuss the impact of phasic changes in lung volume and intrathoracic pressure on the pulmonary and systemic circulation and on the heart function. We review how respirophasic changes on the venous side (great veins geometry) and arterial side (e.g., stroke volume/systolic blood pressure and surrogate signals) can be used to detect fluid responsiveness or hemodynamic alterations commonly encountered in the ICU. We review the physiological limitations of this approach.
-
The transpulmonary thermodilution technique (TPTD) is a safe, multi-parametric advanced cardiopulmonary monitoring technique that provides important parameters required for making decisions in critically ill patients. The TPTD provides more reliable indicators of preload than filling pressures, the unique measurement of extravascular lung water (EVLW) and comparable accuracy in measuring cardiac output (CO). Intermittent measurement of the CO by TPTD when coupled with pulse contour analysis, offer automatic calibration of continuous CO, as well as accurate assessment of volumetric preload, fluid responsiveness and EVLW. TPTD-guided algorithms have been shown to improve the management of high-risk surgical and critically ill patients.
-
Recent advance in imaging modalities used frequently in clinical routine can provide description of the geometrical and hemodynamical properties of the arterial tree in great detail. The combination of such information with models of blood flow of the arterial tree can provide further information, such as details in pressure and flow waves or details in the local flow field. Such knowledge maybe be critical in understanding the development or state of arterial disease and can help clinicians perform better diagnosis or plan better treatments. ⋯ Our development of a generic and patient-specific model of the human arterial tree permitting to study pressure and flow waves propagation in patients is presented. The predicted pressure and flow waveforms are in good agreement with the in vivo measurements. We discuss the utility of these models in different clinical application and future development of interest.