Journal of clinical monitoring and computing
-
The pulmonary artery catheter (PAC) has been widely used for monitoring of critically ill patients over the years, but with advances in less invasive monitoring techniques, notably echocardiography, there are fewer indications for PAC insertion. Nevertheless, the PAC provides simultaneous monitoring of pulmonary artery pressures, cardiac filling, cardiac output and mixed venous oxygen saturation, and still has an important role in complex cases. Adequate and continued training are required to ensure that PAC-derived data are correctly interpreted and applied.
-
J Clin Monit Comput · Oct 2012
ReviewBedside echocardiography in critically ill patients: a true hemodynamic monitoring tool.
Echocardiography is a versatile, accurate and noninvasive tool suited to examination of shocked patients. Since the 1980s, intensive care practitioners have used ultrasound widely for hemodynamic evaluation and for cardiac anatomy visualization. ⋯ We will also report the main indications of echocardiography and the corresponding parameters. Finally, we will indicate educational programs and define minimum training that enable self-sufficiency.
-
One of the main goals of hemodynamic support is to preserve tissue perfusion. However issue perfusion is related more to microvascular perfusion than aortic blood flow. Monitoring the microcirculation has long been difficult. ⋯ Transcutaneous PCO2 measurement at ear lobe is particularly promising. Finally, near infrared spectroscopy can also provide interesting information, especially using vascular occlusion tests which reactivity of the microcirculation to a transient hypoxic insult. These different devices have provided important data helping us to better understand the pathophysiology of sepsis and multiple organ failure.
-
J Clin Monit Comput · Aug 2012
ReviewFrom system to organ to cell: oxygenation and perfusion measurement in anesthesia and critical care.
Maintenance or restoration of adequate tissue oxygenation is a main goal of anesthesiologic and intensive care patient management. Pathophysiological disturbances which interfere with aerobic metabolism may occur at any stage in the oxygen cascade from atmospheric gas to the mitochondria, and there is no single monitoring modality that allows comprehensive determination of "the oxygenation". To facilitate early detection of tissue hypoxia (or hyperoxia) and to allow a goal directed therapy targeted at the underlying problem, the anesthesiologist and intensive care physician require a thorough understanding of the numerous determinants that influence cellular oxygenation. This article reviews the basic physiology of oxygen uptake and delivery to tissues as well as the options to monitor determinants of oxygenation at different stages from the alveolus to the cell.
-
Monitoring of continuous blood pressure and cardiac output is important to prevent hypoperfusion and to guide fluid administration, but only few patients receive such monitoring due to the invasive nature of most of the methods presently available. Noninvasive blood pressure can be determined continuously using finger cuff technology and cardiac output is easily obtained using a pulse contour method. In this way completely noninvasive continuous blood pressure and cardiac output are available for clinical use in all patients that would otherwise not be monitored. Developments and state of art in hemodynamic monitoring are reviewed here, with a focus on noninvasive continuous hemodynamic monitoring form the finger.