Journal of clinical monitoring and computing
-
J Clin Monit Comput · Jun 2011
Evaluation of mean systemic filling pressure from pulse contour cardiac output and central venous pressure.
The volemic status of a patient can be determined by measuring mean systemic filling pressure (Pmsf). Pmsf is obtained from the venous return curve, i.e. the relationship between central venous pressure (Pcv) and blood flow. We evaluated the feasibility and precision of Pmsf measurement. ⋯ During an inspiratory hold pulmonary flow and aortic flow equilibrate. Cardiac output estimates by arterial pulse contour and by a flow probe around the aorta are interchangeable. Therefore, the venous return curve and Pmsf can be estimated accurately by pulse contour methods.
-
J Clin Monit Comput · Jun 2011
Randomized Controlled TrialTitration of sevoflurane in elderly patients: blinded, randomized clinical trial, in non-cardiac surgery after beta-adrenergic blockade.
Monitoring depth of anesthesia via the processed electroencephalogram (EEG) has been found useful in reducing the amount of anesthetic drugs, optimizing wake-up times, and, in some studies, reducing awareness. Our goal was to determine if titrating sevoflurane as the maintenance anesthetic to a depth of anesthesia monitor (SEDLine™, Masimo, CA) would shorten time to extubation in elderly patients undergoing non-cardiac surgery while on beta-adrenergic blockade. This patient population was selected because the usual cardiovascular signs of inadequate general anesthesia may be masked by beta-blocker therapy. ⋯ Use of the SEDLine™ monitor's data to titrate sevoflurane did not improve the time to extubation or change short-term outcome of geriatric surgical patients receiving beta-adrenergic blockers. (ClinicalTrials.gov number, NCT00938782).
-
The Lightman is intended to test the optical and electrical properties of a pulse oximeter probe including the wavelength of the light emitting diode by means of a micro spectrometer. The aim of this study was to evaluate the ability of the Lightman to detect faulty pulse oximeter finger probes by testing the accuracy of the wavelength of the light emitting diode in isolation from the monitor. ⋯ Our findings suggest that the Lightman can detect faulty probes and predict reasonably accurately the direction of the probe's error. The Lightman may be considered as a useful tool to assess the accuracy of pulse oximeters. The national survey highlighted a wide variation in the testing procedure utilised to evaluate the accuracy of pulse oximeters. Introduction of guidelines regarding the testing procedure would promote a uniform practice.