Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2013
Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery.
As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. ⋯ Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.
-
J Clin Monit Comput · Aug 2013
ReviewConnecting the dots: rule-based decision support systems in the modern EMR era.
The intensive care unit (ICU) environment is rich in both medical device and electronic medical record (EMR) data. The ICU patient population is particularly vulnerable to medical error or delayed medical intervention both of which are associated with excess morbidity, mortality and cost. ⋯ False alerts and alert fatigue remain prevalent. In the coming era of widespread EMR implementation novel medical informatics methods may be adaptable to the development of next generation, rule-based DSS.
-
Extensive use of high frequency imaging in medical applications permit the estimation of velocity fields which corresponds to motion of landmarks in the imaging field. The focus of this work is on the development of a robust local optical flow algorithm for velocity field estimation in medical applications. Local polynomial fits to the medical image intensity-maps are used to generate convolution operators to estimate the spatial gradients. ⋯ Tikhonov regularization is exploited to synthesize a well posed optimization problem and to penalize large displacements. The proposed algorithm is tested and validated on benchmark datasets for deformable image registration. The ten datasets include large and small deformations, and illustrate that the proposed algorithm outperforms or is competitive with other algorithms tested on this dataset, when using mean and variance of the displacement error as performance metrics.
-
J Clin Monit Comput · Aug 2013
The use of heart rate variability for the early detection of treatable complications after aneurysmal subarachnoid hemorrhage.
High-grade aneurysmal subarachnoid hemorrhage patients are monitored in the ICU for up to 21 days, as they are at risk for complications such as vasospasm of cerebral arteries, cardiac arrhythmias and neurogenic stress cardiomyopathy. The diagnosis of these treatable complications is often delayed by the limitations of monitoring capabilities. We applied computational analysis to a cohort of 24 aneurysmal subarachnoid hemorrhage patients, to identify heart rate variability and ECG frequency profiles that may be potential biomarkers of severe vasospasm, reversible cardiomyopathy and death.
-
J Clin Monit Comput · Aug 2013
ReviewPotential of surface acoustic wave biosensors for early sepsis diagnosis.
Early diagnosis of sepsis is a difficult problem for intensivists and new biomarkers for early diagnosis have been difficult to come by. Here we discuss the potential of adapting a technology from the electronics industry, surface acoustic wave (SAW) sensors, for diagnosis of multiple markers of sepsis in real time, using non-invasive assays of exhaled breath condensate. The principles and advantages of the SAW technology are reviewed as well as a proposed plan for adapting this flexible technology to early sepsis detection.