Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2016
Comparative StudyComparison of end-tidal CO2 measured by transportable capnometer (EMMA™ capnograph) and arterial pCO2 in general anesthesia.
An end-tidal CO2 monitor (capnometer) is used most often as a noninvasive substitute for PaCO2 in anesthesia, anesthetic recovery, and intensive care. Additionally, the wide spread on-site use of portable capnometers in emergency and trauma situations is now observed. This study was conducted to compare PaCO2 measurement between the EMMA™ portable-capnometer and sidestream capnometry. ⋯ The percent error was 13.0 %. Significant differences between the PETCO2 and PaCO2 values of the EMMA™ portable-capnometer were not observed for patients undergoing general anesthesia. ClinicalTrials.gov identifier NCT02184728.
-
J Clin Monit Comput · Oct 2016
Importance of re-calibration time on pulse contour analysis agreement with thermodilution measurements of cardiac output: a retrospective analysis of intensive care unit patients.
We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. ⋯ Shorter calibration times improved the agreement of cardiac output pulse contour estimates with thermodilution. Use of minimally invasive pulse contour methods in intensive care monitoring could benefit from prospective studies evaluating calibration protocols. The applied pulse contour analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.
-
J Clin Monit Comput · Oct 2016
The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study.
In critically ill patients, many decisions depend on accurate assessment of the hemodynamic status. We evaluated the accuracy of physicians' conventional hemodynamic assessment and the impact that additional advanced monitoring had on therapeutic decisions. Physicians from seven European countries filled in a questionnaire in patients in whom advanced hemodynamic monitoring using transpulmonary thermodilution (PiCCO system; Pulsion Medical Systems SE, Feldkirchen, Germany) was going to be initialized as part of routine care. ⋯ In 54 % of cases physicians underestimated the actual CO by more than 20 %. The information provided by the additional advanced monitoring led 33, 22, 22, and 13 % of physicians to change their decisions about fluids, inotropes, vasoconstrictors, and diuretics, respectively. The limited clinical ability of physicians to correctly assess the hemodynamic status, and the significant impact that more physiological information has on major therapeutic decisions, support the use of advanced hemodynamic monitoring in critically ill patients.
-
J Clin Monit Comput · Oct 2016
The effect of variable arterial transducer level on the accuracy of pulse contour waveform-derived measurements in critically ill patients.
We know that a 10 cm departure from the reference level of pressure transducer position is equal to a 7.5 mmHg change of invasive hemodynamic pressure monitoring in a fluid-filled system. However, the relationship between the site level of a variable arterial pressure transducer and the pulse contour-derived parameters has yet to be established in critically ill patients. Moreover, the related quantitative analysis has never been investigated. ⋯ On average, for every centimeter change of the transducer, there was a corresponding 0.014 L/min/m(2) CCI change and 0.36 % change rate, a 1.41 mmHg/s dP/dtmax change and 0.13 % change rate, and a 25 dyne/s/cm(5) SVRI change and 1.2 % change rate. The variation of arterial transducer position can result in inaccurate measurement of pulse contour waveform-derived parameters, especially when the transducer's vertical distance is more than 10 cm from the phlebostatic axis. These findings have clinical implications for continuous hemodynamic monitoring.