Journal of clinical monitoring and computing
-
Inhaled anesthetics have been utilized mostly for general anesthesia in the operating room and oftentimes for sedation and for treatment of refractory status epilepticus and status asthmaticus in the intensive care unit. These contexts in the ICU setting are related to potential for prolonged administration wherein potential organ toxicity is a concern. ⋯ High dose inhaled agents are associated with postoperative cognitive dysfunction (POCD) and other situations. However, thus far no strong indication of problematic neuro or organ toxicity has been demonstrated after prolonged use of low dose volatile anesthesia.
-
J Clin Monit Comput · Aug 2018
Review Comparative Study Historical ArticleEfficient application of volatile anaesthetics: total rebreathing or specific reflection?
The circle system has been in use for more than a 100 years, whereas the first clinical application of an anaesthetic reflector was reported just 15 years ago. Its functional basis relies on molecular sieves such as zeolite crystals or activated carbon. In a circle system, the breathing gas is rebreathed after carbon dioxide absorption; a reflector on the other hand specifically retains the anaesthetic during expiration and resupplies it during the next inspiration. ⋯ The AnaConDa consists only of a reflector which is connected to a syringe pump for infusion of liquid sevoflurane or isoflurane. The Mirus represents a technical advancement; its control unit includes a gas and ventilation monitor as well as a gas dispensing unit. The functionality, specific features, advantages and disadvantages of both systems are discussed in the text.
-
J Clin Monit Comput · Aug 2018
Review Historical ArticleA technical review of the history, development and performance of the anaesthetic conserving device "AnaConDa" for delivering volatile anaesthetic in intensive and post-operative critical care.
There is a shift in critical care to adopt volatile anaesthetics as sedatives for certain patients using mechanical ventilation. Accompanying this shift is a growing body of literature describing the advantages or disadvantages of using isoflurane or sevoflurane for long term sedation. This practise requires a cost effective, efficient and safe means to deliver these drugs that can simultaneously operate with modern critical care ventilators and ventilation protocols while protecting the care environment and care workers from excessive exposure to the drugs. ⋯ This reflection reduces the total amount of anaesthetic needed, reducing that which is exhausted or scavenged upon exhalation. It can be used for 24 h of sedation, and fits into current critical care ventilator circuits almost without modifications. This article will describe the physical characteristics of the device, how it works, its development history and the performance parameters under which it can be used.
-
J Clin Monit Comput · Aug 2018
ReviewInhaled anesthetic agent sedation in the ICU and trace gas concentrations: a review.
There is a growing interest in the use of volatile anesthetics for inhalational sedation of adult critically ill patients in the ICU. Its safety and efficacy has been demonstrated in various studies and technical equipment such as the anaesthetic conserving device (AnaConDa™; Sedana Medical, Uppsala, Sweden) or the MIRUS™ system (Pall Medical, Dreieich, Germany) have significantly simplified the application of volatile anesthetics in the ICU. ⋯ In this review, benefits, risks, and technical aspects of inhalational sedation in the ICU are discussed. Further, the potential health effects of occupational long-term low-concentration agent exposure, the staffs' exposure levels in clinical practice, and strategies to minimize the individual gas exposure are reviewed.