Journal of clinical monitoring and computing
-
J Clin Monit Comput · Apr 2024
ReviewTen good reasons to consider gastrointestinal function after acute brain injury.
The brain-gut axis represents a bidirectional communication linking brain function with the gastrointestinal (GI) system. This interaction comprises a top-down communication from the brain to the gut, and a bottom-up communication from the gut to the brain, including neural, endocrine, immune, and humoral signaling. Acute brain injury (ABI) can lead to systemic complications including GI dysfunction. ⋯ Despite novel biomarkers represent a limitation in clinical practice, intra-abdominal pressure (IAP) is easy-to-use and measurable at bedside. Increased IAP can be both cause and consequence of GI dysfunction, and it can influence cerebral perfusion pressure and intracranial pressure via physiological mechanisms. Here, we address ten good reasons to consider GI function in patients with ABI, highlighting the importance of its assessment in neurocritical care.
-
J Clin Monit Comput · Apr 2024
ReviewArtificial intelligence and its clinical application in Anesthesiology: a systematic review.
Application of artificial intelligence (AI) in medicine is quickly expanding. Despite the amount of evidence and promising results, a thorough overview of the current state of AI in clinical practice of anesthesiology is needed. Therefore, our study aims to systematically review the application of AI in this context. ⋯ AI systems are being integrated into anesthesiology clinical practice, enhancing medical professionals' skills of decision-making, diagnostic accuracy, and therapeutic response.
-
J Clin Monit Comput · Apr 2024
ReviewArtificial intelligence and its clinical application in Anesthesiology: a systematic review.
Application of artificial intelligence (AI) in medicine is quickly expanding. Despite the amount of evidence and promising results, a thorough overview of the current state of AI in clinical practice of anesthesiology is needed. Therefore, our study aims to systematically review the application of AI in this context. ⋯ AI systems are being integrated into anesthesiology clinical practice, enhancing medical professionals' skills of decision-making, diagnostic accuracy, and therapeutic response.
-
J Clin Monit Comput · Apr 2024
ReviewClosed-loop anesthesia: foundations and applications in contemporary perioperative medicine.
A closed-loop automatically controls a variable using the principle of feedback. Automation within anesthesia typically aims to improve the stability of a controlled variable and reduce workload associated with simple repetitive tasks. This approach attempts to limit errors due to distractions or fatigue while simultaneously increasing compliance to evidence based perioperative protocols. ⋯ Despite their advantages, these tools still require that a well-trained practitioner maintains situation awareness, understands how closed-loop systems react to each variable, and is ready to retake control if the closed-loop systems fail. In the future, multiple input multiple output closed-loop systems will control anesthetic, fluid and vasopressor titration and may perhaps integrate other key systems, such as the anesthesia machine. Human supervision will nonetheless always be indispensable as situation awareness, communication, and prediction of events remain irreplaceable human factors.
-
J Clin Monit Comput · Apr 2024
ReviewElectrocardiogram alterations in non-traumatic brain injury: a systematic review.
The presence of abnormal electrocardiograms in individuals without known organic heart disease is one of the most common manifestations of cardiac dysfunction occurring during acute non traumatic brain injury. The primary goal of the present review is to provide an overview of the available data and literature regarding the presence of new-onset electrocardiographic (ECG) alterations in acute non traumatic brain injury. The secondary aim is to identify the incidence of ECG alterations and consider the prognostic significance of new-onset ECG changes in this setting. ⋯ The current data on ECG QT dispersion and mortality appear less clearly associated. While some patients demonstrated poor outcomes, others showed no relationship with poor outcomes or increased in-hospital mortality. Observing ECG alterations carefully after cerebral damage is important in the critical care of these patients as it can expose preexisting myocardial disease and change prognosis.