Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2025
Characterizing drivers of change in intraoperative cerebral saturation using supervised machine learning.
Regional cerebral oxygen saturation (rSO2) is used to monitor cerebral perfusion with emerging evidence that optimization of rSO2 may improve neurological and non-neurological outcomes. To manipulate rSO2 an understanding of the variables that drive its behavior is necessary, and this can be accomplished using supervised machine learning. This study aimed to establish a hierarchy by which various hemodynamic and ventilatory variables contribute to intraoperative changes in rSO2. ⋯ CO2 is a significant mediator of changes in rSO2 in an intraoperative setting, through its established effects on cerebral blood flow. This study furthers our overall understanding of the complex physiologic process that governs cerebral oxygenation by quantifying the hierarchy by which rSO2 is affected. Clinical Trial Number NCT01838733 (ClinicalTrials.gov).
-
J Clin Monit Comput · Feb 2025
Personalized intraoperative arterial pressure management and mitochondrial oxygen tension in patients having major non-cardiac surgery: a pilot substudy of the IMPROVE trial.
The "Cellular Oxygen METabolism" (COMET) system (Photonics Healthcare, Utrecht, The Netherlands) non-invasively measures mitochondrial oxygen tension (mitoPO2) in the skin. The effects of general anesthesia and major non-cardiac surgery on mitoPO2 remain unknown. In this pre-planned pilot substudy of the "Intraoperative blood pressure Management based on the individual blood PRessure profile: impact on postOperatiVE organ function" (IMPROVE) trial, we measured mitoPO2 from induction of general anesthesia until the end of surgery in 19 major non-cardiac surgery patients (10 assigned to personalized and 9 to routine intraoperative arterial pressure management). ⋯ MitoPO2 under general anesthesia was about a quarter lower than preoperative awake mitoPO2, substantially fluctuated during major non-cardiac surgery, and transiently decreased below 20 mmHg in about two-thirds of the patients. Personalized - compared to routine - intraoperative arterial pressure management did not increase intraoperative mitoPO2. Whether intraoperative decreases in mitoPO2 are clinically meaningful warrants further investigation.