Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2016
Changes in cerebral oxygen saturation during transcatheter aortic valve replacement.
Cerebral oxygen saturation (rSO2) is a non-invasive monitor used to monitor cerebral oxygen balance and perfusion. Decreases in rSO2 >20 % from baseline have been associated with cerebral ischemia and increased perioperative morbidity. During transcatheter aortic valve replacement (TAVR), hemodynamic manipulation with ventricular pacing up to 180 beats per minute is necessary for valve deployment. ⋯ Furthermore, baseline rSO2 in this population was at the lower limit of the published normal range. Significant cerebral desaturation during valve deployment may potentially be limited by maximizing rSO2 after anesthetic induction. Future studies should attempt to correlate recovery in rSO2 with recovery of hemodynamics and cardiac function, provide detailed neurological assessments pre and post procedure, determine the most effective method of maximizing rSO2 prior to hemodynamic manipulation, and provide the most rapid method of recovery of rSO2 following valve deployment.
-
J Clin Monit Comput · Oct 2016
An adaptive real-time beat detection method for continuous pressure signals.
A novel adaptive real-time beat detection method for pressure related signals is proposed by virtue of an enhanced mean shift (EMS) algorithm. This EMS method consists of three components: spectral estimates of the heart rate, enhanced mean shift algorithm and classification logic. The Welch power spectral density method is employed to estimate the heart rate. ⋯ The parameters of the algorithm are adaptively tuned for ensuring its robustness in various heart rate conditions. The performance of the EMS method is validated with expert annotations of two standard databases and a non-invasive dataset. The results from this method show that the sensitivity (Se) and positive predictivity (+P) are significantly improved (i.e., Se > 99.45 %, +P > 98.28 %, and p value 0.0474) by comparison with the existing scheme from the previously published literature.
-
J Clin Monit Comput · Oct 2016
Review Meta AnalysisAccuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis.
Several minimally-invasive technologies are available for cardiac output (CO) measurement in children, but the accuracy and precision of these devices have not yet been evaluated in a systematic review and meta-analysis. We conducted a comprehensive search of the medical literature in PubMed, Cochrane Library of Clinical Trials, Scopus, and Web of Science from its inception to June 2014 assessing the accuracy and precision of all minimally-invasive CO monitoring systems used in children when compared with CO monitoring reference methods. Pooled mean bias, standard deviation, and mean percentage error of included studies were calculated using a random-effects model. ⋯ Although the pooled bias was small, the mean pooled percentage error was in the gray zone of clinical applicability. In the sub-group analysis, electrical cardiometry was the device that provided the most accurate measurement. However, a high heterogeneity between studies was found, likely due to a wide range of study characteristics.
-
J Clin Monit Comput · Oct 2016
Review Case ReportsIntraoperative non invasive intracranial pressure monitoring during pneumoperitoneum: a case report and a review of the published cases and case report series.
Non-invasive measurement of ICP (nICP) can be warranted in patients at risk for developing increased ICP during pneumoperitoneum (PP). Our aim was to assess available data on the application of nICP monitoring during these procedures and to present a patient assessed with an innovative combination of noninvasive tools. Literature review of nICP assessment during PP did not find any studies comparing different methods intraprocedurally and only few studies of any nICP monitoring were available: transcranial Doppler (TCD) studies used the pulsatility index (PI) as an estimator of ICP and failed to detect a significant ICP increase during PP, whereas two out of three optic nerve sheath diameter (ONSD) studies detected a statistically significant ICP increase. ⋯ Considering the high intraoperative risk of developing intracranial hypertension, he was monitored through parallel ONSD ultrasound measurement and TCD derived formulae (flow velocity diastolic formula, FVdnICP, and PI). ONSD and FVdnICP methods indicated a significant ICP increase during PP, whereas PI was not significantly increased. Our experience, combined with the literature review, seems to suggest that PI might not detect ICP changes in this context, however we indicate a possible interest of nICP monitoring during PP by means of ONSD and of TCD derived FVdNICP, especially for patients at risk for increased ICP.