Bioinformatics
-
To increase the signal resolution for large-scale meta-analyses of genome-wide association studies, genotypes at unmeasured single nucleotide polymorphisms (SNPs) are commonly imputed using large multi-ethnic reference panels. However, the ever increasing size and ethnic diversity of both reference panels and cohorts makes genotype imputation computationally challenging for moderately sized computer clusters. Moreover, genotype imputation requires subject-level genetic data, which unlike summary statistics provided by virtually all studies, is not publicly available. While there are much less demanding methods which avoid the genotype imputation step by directly imputing SNP statistics, e.g. Directly Imputing summary STatistics (DIST) proposed by our group, their implicit assumptions make them applicable only to ethnically homogeneous cohorts. ⋯ Supplementary Data are available at Bioinformatics online.
-
Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. ⋯ Supplementary data are available at Bioinformatics online.
-
Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains and three-dimensional protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology 2016, Orlando, FL). ⋯ dkovats@iscb.org or rost@in.tum.de.
-
pViz.js is a visualization library for displaying protein sequence features in a Web browser. By simply providing a sequence and the locations of its features, this lightweight, yet versatile, JavaScript library renders an interactive view of the protein features. Interactive exploration of protein sequence features over the Web is a common need in Bioinformatics. Although many Web sites have developed viewers to display these features, their implementations are usually focused on data from a specific source or use case. Some of these viewers can be adapted to fit other use cases but are not designed to be reusable. pViz makes it easy to display features as boxes aligned to a protein sequence with zooming functionality but also includes predefined renderings for secondary structure and post-translational modifications. The library is designed to further customize this view. We demonstrate such applications of pViz using two examples: a proteomic data visualization tool with an embedded viewer for displaying features on protein structure, and a tool to visualize the results of the variant_effect_predictor tool from Ensembl. ⋯ pViz.js is a JavaScript library, available on github at https://github.com/Genentech/pviz. This site includes examples and functional applications, installation instructions and usage documentation. A Readme file, which explains how to use pViz with examples, is available as Supplementary Material A.
-
RNA-Seq has become a potent and widely used method to qualitatively and quantitatively study transcriptomes. To draw biological conclusions based on RNA-Seq data, several steps, some of which are computationally intensive, have to be taken. Our READemption pipeline takes care of these individual tasks and integrates them into an easy-to-use tool with a command line interface. To leverage the full power of modern computers, most subcommands of READemption offer parallel data processing. While READemption was mainly developed for the analysis of bacterial primary transcriptomes, we have successfully applied it to analyze RNA-Seq reads from other sample types, including whole transcriptomes and RNA immunoprecipitated with proteins, not only from bacteria but also from eukaryotes and archaea. ⋯ READemption is implemented in Python and is published under the ISC open source license. The tool and documentation is hosted at http://pythonhosted.org/READemption (DOI:10.6084/m9.figshare.977849).