Bioinformatics
-
Reliable identification of expressed somatic insertions/deletions (indels) is an unmet need due to artifacts generated in PCR-based RNA-Seq library preparation and the lack of normal RNA-Seq data, presenting analytical challenges for discovery of somatic indels in tumor transcriptome. ⋯ Supplementary data are available at Bioinformatics online.
-
Single cell RNA sequencing is a revolutionary technique to characterize inter-cellular transcriptomics heterogeneity. However, the data are noise-prone because gene expression is often driven by both technical artifacts and genuine biological variations. Proper disentanglement of these two effects is critical to prevent spurious results. While several tools exist to detect and remove low-quality cells in one single cell RNA-seq dataset, there is lack of approach to examining consistency between sample sets and detecting systematic biases, batch effects and outliers. We present scRNABatchQC, an R package to compare multiple sample sets simultaneously over numerous technical and biological features, which gives valuable hints to distinguish technical artifact from biological variations. scRNABatchQC helps identify and systematically characterize sources of variability in single cell transcriptome data. The examination of consistency across datasets allows visual detection of biases and outliers. ⋯ Supplementary data are available at Bioinformatics online.
-
Due to the rapidly increasing scale and diversity of epigenomic data, modular and scalable analysis workflows are of wide interest. Here we present snakePipes, a workflow package for processing and downstream analysis of data from common epigenomic assays: ChIP-seq, RNA-seq, Bisulfite-seq, ATAC-seq, Hi-C and single-cell RNA-seq. snakePipes enables users to assemble variants of each workflow and to easily install and upgrade the underlying tools, via its simple command-line wrappers and yaml files. ⋯ Supplementary data are available at Bioinformatics online.
-
Insertion and deletion (indels) have been recognized as an important source generating tumor-specific mutant peptides (neoantigens). The focus of indel-derived neoantigen identification has been on leveraging DNA sequencing such as whole exome sequencing, with the effort of using RNA-seq less well explored. Here we present ScanNeo, a fast-streamlined computational pipeline for analyzing RNA-seq to predict neoepitopes derived from small to large-sized indels. We applied ScanNeo in a prostate cancer cell line and validated our predictions with matched mass spectrometry data. Finally, we demonstrated that indel neoantigens predicted from RNA-seq were associated with checkpoint inhibitor response in a cohort of melanoma patients. ⋯ Supplementary data are available at Bioinformatics online.
-
Transposable elements (TEs) influence the evolution of novel transcriptional networks yet the specific and meaningful interpretation of how TE-derived transcriptional initiation contributes to the transcriptome has been marred by computational and methodological deficiencies. We developed LIONS for the analysis of RNA-seq data to specifically detect and quantify TE-initiated transcripts. ⋯ Supplementary data are available at Bioinformatics online.