Experimental gerontology
-
Experimental gerontology · May 2012
Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.
Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. ⋯ No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.
-
Experimental gerontology · May 2012
Comparative StudyLow survivorship of dauer larva in the nematode Caenorhabditis japonica, a potential comparative system for a model organism, C. elegans.
The nematode dauer larva (DL) is a non-aging diapause stage. The DL of the model nematode Caenorhabditis elegans has been studied as a model system for aging and longevity. However, information on DL in other nematode species is limited. ⋯ The fact that C. japonica DL cannot survive away from its insect host indicates that its longevity is increased by unknown factors derived from the host. Despite these significant differences between C. japonica and C. elegans, these two species are phylogenetically closely related (they are derived from a common ancestor). Therefore, C. japonica could be a good comparative system for C. elegans, and further physiological and molecular analyses of C. japonica DL may provide important information about the internal and external factors affecting the longevity of nematodes in general.