Experimental gerontology
-
Experimental gerontology · Apr 2007
Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea.
Pathologies of senescence, in particular those of neurosensory organs represent an important health problem. The improvement of the life expectation entails the fast increase of the frequency of the age-related hearing loss (ARHL) in the population. There are numerous factors that contribute to this process, which include altered vascular characteristics, hypoxia/ischemia, genetic mutations and production of reactive oxygen species. ⋯ Moreover, the Schwann cells of the spiral ganglion seemed to be more vulnerable to free radical damage than the neurons and degenerated more rapidly. The mechanisms of degeneration in the spiral ganglion involved a caspase-3 and Bax mediated-apoptosis via p53 protein accumulation. Since oxygen radicals are required for the post-translational stabilization of HIF-1alpha during hypoxia, the tandem " HIF-ROS " induced multiple reactions within the cochlea, like a strong inflammatory response with increased expression of TNF-alpha, and inhibition of neuronal protection mechanisms with repression of IGF-1.
-
The oxidative stress theory of aging, an expansion of the mitochondrial theory of aging, is based around the idea of a vicious cycle, in which somatic mutations of mitochondrial DNA (mtDNA) provoke respiratory chain dysfunction leading to enhanced ROS production and in turn to the accumulation of further mtDNA mutations. Mitochondrial dysfunction and mtDNA mutations are amplified during the course of aging. ⋯ However, lack of increased oxidative stress in the mtDNA-mutator mice raises doubts in the direct connection of mtDNA mutations with increased ROS production, challenging the oxidative stress theory of aging. The purpose of this short review is to highlight several studies that provide direct evidence that accelerated aging is linked to mtDNA mutations, without an increase in oxidative damage.
-
Clinical experience gives rise to the impression that there are differences in fracture healing in different age groups. It is evident that fractures heal more efficiently in children than in adults. However, minimal objective knowledge exists to evaluate this assumption. ⋯ The biological basis of fracture healing will provide a context for revealing the pathophysiology of delayed or even impaired bone regeneration in the elderly. We will summarize experimental studies on age-related changes at the cellular and molecular level that will add to the pathophysiological understanding of the compromised bone regeneration capacity believed to exist in the elderly patient. We will suggest why this understanding would be useful for therapeutics focused on bone regeneration, in particular fracture healing at an advanced age.
-
Experimental gerontology · Nov 2006
Molecular correlates of age-specific responses to traumatic brain injury in mice.
Aged traumatic brain injury (TBI) patients suffer higher rates of mortality and disability than younger patients. Cognitive problems common to TBI patients are associated with damage to the hippocampus, a central locus of learning and memory. To investigate the molecular mechanisms of age-related vulnerability to brain injury in a mouse model of TBI, we studied the effects of TBI on hippocampal gene expression in young and aged mice. ⋯ We compared injury-induced gene expression in hippocampal neurons of young and aged mice using quantitative ribonuclease protection assay analysis of linearly amplified mRNA from laser captured neurons. Both increased age and TBI were associated with increased expression of neuroprotective (brain-derived neurotrophic factor), pro-inflammatory (interleukin-1beta), and proapoptotic (caspase-3) genes in mouse hippocampal neurons. Our data support previous reports that suggested the CA3 subregion is highly susceptible to fluid percussion TBI and that age-related changes in gene expression are one potential mechanism of increased vulnerability of the aged brain to TBI.
-
Experimental gerontology · Apr 2006
ReviewAlzheimer's disease and post-operative cognitive dysfunction.
Alzheimer's disease (AD), an insidious and progressive neurodegenerative disorder accounting for the vast majority of dementia, is characterized by global cognitive decline and the robust accumulation of amyloid deposits and neurofibrillary tangles in the brain. This review article is based on the currently published literature regarding molecular studies of AD and the potential involvement of AD neuropathogenesis in post-operative cognitive dysfunction (POCD). Genetic evidence, confirmed by neuropathological and biochemical studies, indicates that excessive beta-amyloid protein (Abeta) generated from amyloidogenic processing of the beta-amyloid precursor protein (APP) plays a fundamental role in the AD neuropathogenesis. ⋯ Surgery and anesthesia can cause cognitive disorders, especially in elderly patients. Even the molecular mechanisms underlying these disorders are largely unknown; several perioperative factors such as hypoxia, hypocapnia and anesthetics may be associated with AD and render POCD via trigging AD neuropathogenesis. More studies to assess the potential relationship between anesthesia/surgery and AD dementia are, therefore, urgently needed.