Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco
-
Cigarette smoking and cannabis use are heritable traits and share, at least in part, a common genetic substrate. In recent years, the prevalence of alternative methods of nicotine intakes, such as electronic cigarette (e-cigarette) and water pipe use, has risen substantially. We tested whether the genetic vulnerability underlying cigarettes smoking and cannabis use explained variability in e-cigarette and water pipe use phenotypes, as these vaping methods are alternatives for smoking tobacco cigarettes and joints. ⋯ Our study showed that genetic vulnerability to smoking heaviness is associated with lifetime e-cigarette use and age at initiation of water pipe use. This finding has implications for the current debate on whether alternative smoking methods, such as usage of vaping devices, predispose to smoking initiation and related behaviors.
-
Multicenter Study
Common and Rare Variants Genetic Association Analysis of Cigarettes per Day Among Ever-Smokers in Chronic Obstructive Pulmonary Disease Cases and Controls.
Cigarette smoking is a major environmental risk factor for many diseases, including chronic obstructive pulmonary disease (COPD). There are shared genetic influences on cigarette smoking and COPD. Genetic risk factors for cigarette smoking in cohorts enriched for COPD are largely unknown. ⋯ We examined both common and rare coding variants associated with CPD in a large population of heavy smokers with and without COPD of NHW and AA descent. We replicated genome-wide significant associations on chromosome 15q25 with CPD for common variants among NHW subjects, but not for rare variants. We demonstrated for the first time that common variants on chromosome 15q25 associated with CPD are similar among COPD cases and controls. Previously reported associations on chromosome 19 showed suggestive and directionally consistent associations among common variants (RAB4, CYP2A7, and CYP2B6) and for rare variants (CYP2A7) among COPDGene NHW subjects. Although the genetic effect sizes for these single nucleotide polymorphisms on chromosome 15q25 are modest, we show that this creates a substantial smoking burden over the lifetime of a smoker.
-
Cigarette smokers are at increased risk of poor sleep behaviors. However, it is largely unknown whether these associations are due to shared (genetic) risk factors and/or causal effects (which may be bidirectional). ⋯ Using LD score regression, we found evidence that smoking and different sleep behaviors (sleep duration, chronotype (morningness), and insomnia) are moderately genetically correlated-genetic variants associated with less or poorer sleep also increased the odds of smoking (more heavily). MR analyses suggested that heavier smoking causally affects circadian rhythm (decreasing the odds of being a morning person) and there was some indication that insomnia increases smoking heaviness and hampers smoking cessation. Our findings indicate a complex, bidirectional relationship between smoking and sleep behaviors and point to sleep as a potentially interesting smoking treatment target.