Med Phys
-
Needle-based procedures for diagnosing and treating prostate cancer, such as biopsy and brachytherapy, have incorporated three-dimensional (3D) transrectal ultrasound (TRUS) imaging to improve needle guidance. Using these images effectively typically requires the physician to manually segment the prostate to define the margins used for accurate registration, targeting, and other guidance techniques. However, manual prostate segmentation is a time-consuming and difficult intraoperative process, often occurring while the patient is under sedation (biopsy) or anesthetic (brachytherapy). Minimizing procedure time with a 3D TRUS prostate segmentation method could provide physicians with a quick and accurate prostate segmentation, and allow for an efficient workflow with improved patient throughput to enable faster patient access to care. The purpose of this study was to develop a supervised deep learning-based method to segment the prostate in 3D TRUS images from different facilities, generated using multiple acquisition methods and commercial ultrasound machine models to create a generalizable algorithm for needle-based prostate cancer procedures. ⋯ Our proposed algorithm was able to provide a fast and accurate 3D segmentation across variable 3D TRUS prostate images, enabling a generalizable intraoperative solution for needle-based prostate cancer procedures. This method has the potential to decrease procedure times, supporting the increasing interest in needle-based 3D TRUS approaches.