Oncotarget
-
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. ⋯ Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
-
Tyrosine kinase inhibitors (TKIs) have been developed during the last decade that target the vascular endothelial growth factor receptor (VEGFR) are currently being evaluated as treatments for malignant tumors. The increased application of VEGFR-TKIs means that the probability of hypertension is a serious concern. However, the reported incidence varies markedly between clinical trials. Here, we undertook an up-to-date, comprehensive meta-analysis on clinical works to build the incidence of hypertension along with VEGFR-TKIs. The goal was to understand better of the overall venture of cancer patients' hypertension treated with these drugs. ⋯ Patients with cancer that receive VEGFR-TKIs are at a remarkable venture of developing hypertension. Therefore, suitable treatment and monitoring should be introduced to avoid cardiovascular complications.
-
Review Meta Analysis
HER2 amplification level is not a prognostic factor for HER2-positive breast cancer with trastuzumab-based adjuvant treatment: a systematic review and meta-analysis.
Trastuzumab-based therapy is a standard, targeted treatment for HER2-positive breast cancer in the adjuvant setting. However, patients do not benefit equally from it and the association between HER2 amplification level and patients' survival remains controversial. A systematic review and meta-analysis was conducted by incorporating all available evidence to evaluate the association between disease free survival (DFS) and HER2 amplification level. ⋯ HER2 amplification level is not a prognostic factor for HER2-positive breast cancer with trastuzumab-based targeted therapy in the clinical adjuvant setting.
-
Review Meta Analysis
HER2 amplification level is not a prognostic factor for HER2-positive breast cancer with trastuzumab-based adjuvant treatment: a systematic review and meta-analysis.
Trastuzumab-based therapy is a standard, targeted treatment for HER2-positive breast cancer in the adjuvant setting. However, patients do not benefit equally from it and the association between HER2 amplification level and patients' survival remains controversial. A systematic review and meta-analysis was conducted by incorporating all available evidence to evaluate the association between disease free survival (DFS) and HER2 amplification level. ⋯ HER2 amplification level is not a prognostic factor for HER2-positive breast cancer with trastuzumab-based targeted therapy in the clinical adjuvant setting.
-
Myeloid-derived suppressor cells (MDSCs) play a pivotal role in promoting tumor growth and metastasis and can even decrease the efficacy of immunotherapy. In breast cancer, MDSCs are recruited mainly by breast cancer cells to form a tumor-favoring microenvironment to suppress the anti-tumor immune response. In addition, MDSCs can react directly with breast cancer cells. ⋯ We further describe MDSC-targeted immune therapies for breast cancer, which are classified as: preventing the formation of MDSCs, eliminating MDSDCs, and reducing the products of MDSCs. Furthermore, MDSC-targeted immunotherapy potentiates the effect of the other immunotherapies. Based on the facts that MSDCs have significant roles in breast cancer malignant behaviors and can be suppressed by various strategies, we do believe MDSC-targeted immunotherapy presents a broad prospect in the future.