Oncotarget
-
LncRNAs are long non-coding regulatory RNAs that are longer than 200 nucleotides. One of the major functions of lncRNAs is the regulation of specific gene expression at multiple steps including, recruitment and expression of basal transcription machinery, post-transcriptional modifications and epigenetics [1]. Emerging evidence suggests that lncRNAs also play a critical role in maintaining tissue homeostasis during physiological and pathological conditions, lipid homeostasis, as well as epithelial and smooth muscle cell homeostasis, a topic that has been elegantly reviewed [2-5]. ⋯ Several studies have compared the expression of lncRNAs under normal and cancerous conditions and found differential expression of several lncRNAs, suggesting thereby an involvement of lncRNAs in disease processes [7, 8]. Furthermore, the ability of lncRNAs to influence epigenetic changes also underlies their role in disease pathogenesis since epigenetic regulation is known to play a critical role in many human diseases [1]. LncRNAs thus are not only involved in homeostatic functioning but also play a vital role in the progression of many diseases, thereby underscoring their potential as novel therapeutic targets for the alleviation of a variety of human disease conditions.
-
Review
Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.
Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.
-
Despite years of effort, intracerebral hemorrhage (ICH) remains the most devastating form of stroke with more than 40% 30-day mortality worldwide. Hematoma expansion (HE), which occurs in one third of ICH patients, is strongly predictive of worse prognosis and potentially preventable if high-risk patients were identified in the early phase of ICH. In this review, we summarize data from recent studies on HE prediction and classify those potential indicators into four categories: clinical (severity of consciousness disturbance; blood pressure; blood glucose at and after admission); laboratory (hematologic parameters of coagulation, inflammation and microvascular integrity status), radiographic (interval time from ICH onset; baseline volume, shape and density of hematoma; intraventricular hemorrhage; especially the spot sign and modified spot sign) and integrated predictors (9-point or 24-point clinical prediction algorithm and PREDICT A/B). We discuss those predictors' underlying pathophysiology in HE and present opportunities to develop future therapeutic strategies.
-
Many studies manifested miRNA-100 was deregulated in various cancers, which indicated that miRNA-100 might be a potential biomarker of cancer diagnosis and prognosis. However, the role of miRNA-100 was still uncertain. We searched for qualified studies using PubMed, EMBASE, Web of Science, Cochrane library and CNKI databases. ⋯ And, the area under SROC curve (AUC) was 0.8141. We also found that lower expression of miRNA-100 in cancer tissues could significantly predict poorer prognosis in overall cancer (HR = 0.59, 95%CI: 0.39-0.90), especially in genital system tumors (HR = 0.42, 95%CI: 0.27-0.66, P = 0.431), bladder cancer (HR = 0.21, 95%CI: 0.06-0.73, P = 0.143) and esophageal squamous cell carcinoma (HR = 0.26, 95%CI: 0.13-0.52, P = 0.164). Our studies concluded that miRNA-100 has a certain value in diagnosis and it may indicate a poor prognosis of cancers.
-
Circular RNAs (circRNAs) are a newly validated class of endogenous non-coding RNA, generated from the ligation of exons, introns, or both, which arise via a diverse number of cellular mechanisms. Due to rapid advances in the development of combined high-throughput sequencing and bioinformatics analyzing tools, many circRNAs have recently been discovered, revealing an expansive number of ubiquitously expressed mammalian circRNAs. ⋯ Indeed, recent evidence has shown that circRNAs are associated with many human cancers. Herein, we review the molecular characteristics and biogenesis of circRNAs, with a focus on newly identified circRNAs that may play an important role in human cancer, through their regulation of miR expression.