Stem Cell Res Ther
-
Mesenchymal stem cells (MSCs) are immunosuppressive, but we lack an understanding of how these adult stem cells are in turn affected by immune cells and the surrounding tissue environment. As MSCs have stromal functions and exhibit great plasticity, the influence of an inflamed microenvironment on their responses is important to determine. MSCs downregulate microglial inflammatory responses, and here we describe the mutual effects of coculturing mouse bone marrow MSCs with BV2 microglia in a lipopolysaccharide (LPS) inflammatory paradigm. ⋯ These effects demonstrate the multifaceted and reciprocal interactions of MSCs and microglia within an inflammatory milieu.
-
Nervous system injuries comprise a diverse group of disorders that include traumatic brain injury (TBI). The potential of mesenchymal stem cells (MSCs) to differentiate into neural cell types has aroused hope for the possible development of autologous therapies for central nervous system injury. ⋯ These results suggest that PBD CD133+ABCG2+CXCR4+ MSCs have the potential for development as an autologous treatment for TBI and neurodegenerative disorders and that MSC derived cell products produced immediately after transplantation may aid in reducing the immediate cognitive defects of TBI.
-
We tested the hypothesis that apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) are superior to healthy (H)-ADMSC in attenuating cecal ligation puncture (CLP)-induced sepsis-mediated lung and kidney injuries. ⋯ A-ADMSC therapy was superior to H-ADMSC therapy in protecting major organs from damage in rats with CLP-induced sepsis syndrome.
-
Experimental evidence has indicated a role of adult renal progenitor cells in kidney regeneration and a protective role of the kidney by erythropoietin (EPO) and suramin in animal models and in humans after acute kidney injury (AKI). Han and colleagues analyzed different therapeutic effects between mouse renal progenitor cells (MRPCs), MRPC/EPO, or MRPC/suramin on the regeneration and protection of renal function after AKI. Their results revealed that MRPCs in combination with EPO or suramin are able to attenuate renal damage and promote renal recovery after ischemia/reperfusion injury in a mouse model. The researchers concluded that the combined approach with MRPCs and EPO or suramin could be a new therapeutic strategy for AKI.
-
Cell therapy using adipose-derived stem cells has been reported to improve chronic wounds via differentiation and paracrine effects. One such strategy is to deliver stem cells in hydrogels, which are studied increasingly as cell delivery vehicles for therapeutic healing and inducing tissue regeneration. This study aimed to determine the behaviour of encapsulated adipose-derived stem cells and identify the secretion profile of suitable growth factors for wound healing in a newly developed thermoresponsive PEG-hyaluronic acid (HA) hybrid hydrogel to provide a novel living dressing system. ⋯ This study indicates that hADSCs can be maintained in a P-SH-HA hydrogel, and secrete pro-angiogenic growth factors with low cytotoxicity. With the potential to add more functionality for further structural modifications, this stem cell hydrogel system can be an ideal living dressing system for wound healing applications.