Tissue Eng
-
The management of peripheral nerve injury continues to be a major clinical challenge. The most widely used technique for bridging defects in peripheral nerves is the use of autologous nerve grafts. This technique, however, necessitates a donor nerve and corresponding deficit. ⋯ The main disadvantages of this technique are the risk that nerve fibers can grow out of the muscle tissue during nerve regeneration, and that a donor site is necessary to harvest the muscle tissue. Despite publications on nerve conduits as an alternative for peripheral nerve repair, autologous nerve grafting is still the standard care for treatment of a nerve gap in the clinical situation; however, the use of the skeletal muscle tissue technique can be added to the surgeon's arsenal of peripheral nerve repair tools, especially for bridging short nerve defects or when traditional nerve autografts cannot be employed. This technique has been investigated both experimentally and clinically and, in this article, an overview of the literature on skeletal muscle grafts for bridging peripheral nerve defects is presented.
-
Advances in understanding the complex process of wound healing and development of novel growth factor and gene therapies would benefit from models that mimic closely the physiology of human wounds. To this end, we developed a hybrid wound-healing model based on human tissue-engineered skin transplanted onto athymic mice. Grafted tissues were infiltrated with mouse mesenchymal cells as native and foreign dermal regions fused together. ⋯ Neovascularization was significantly elevated in the granulation tissue at 1 week and subsided to the level of unwounded tissue at 2 weeks postwounding. Our data suggest that skin equivalents grafted to a mouse model may serve as a realistic model of human wound regeneration. Because skin equivalents can be prepared with patient cells and genetically modified to stimulate or suppress gene expression, this model may be ideal for addressing mechanistic questions and evaluating the efficacy of biomaterials and gene therapeutics for promoting wound healing.