Adv Exp Med Biol
-
Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. ⋯ The fNIRS data suggests a finding that compared to the Pre condition both the "Online" and "Offline" anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task.
-
The literature lacks reports on the role played by the Environmental domain of quality of life (QoL) in care for patients with chronic respiratory diseases. Such information has a high potential for implementation in modern medicine based on a 'tailor-made' holistic healthcare model. ⋯ The greatest contribution to a high value of QoL in the Environmental domain among patients with chronic respiratory diseases was made by the coexistence of high QoL levels in other domains and in satisfaction with QoL. Programs for preventing a decline in QoL in the Environmental domain should include patients with low scores for the above variables as well as those with a low level of education, those who have not shown an improvement in their psychological well-being in the past 12 months, those with a low level of positive mental attitudes or healthy eating habits, a low Camberwell index, and low levels of overall pro-health behavior.
-
We studied the level of blood oxygen saturation (SpO2) in the brain in newborn rats in the pre- and post-stroke periods, as well as the changes in cerebral blood flow and beta-arrestin-1 as a marker of hypoxic stress. Our results show that mild hypoxia precedes the stroke development and is associated with venous relaxation and decrease blood outflow from the brain resulting in the elevation of synthesis of beta-arrestin-1 in the brain. The incidence of stroke is characterized by severe hypoxia, which is accompanied by the progression of pathological changes in cerebral veins and the high level of beta-arrestin-1.
-
Nanomolar intravascular concentrations of drag-reducing polymers (DRP) have been shown to improve hemodynamics and survival in animal models of ischemic myocardium and limb, but the effects of DRP on the cerebral microcirculation have not yet been studied. We recently demonstrated that DRP enhance microvascular flow in normal rat brain and hypothesized that it would restore impaired microvascular perfusion and improve outcomes after focal ischemia and traumatic brain injury (TBI). ⋯ DRP, injected post insult, increased blood volume flow in arterioles and red blood cell (RBC) flow velocity in capillaries mitigating capillary stasis, tissue hypoxia and BBB degradation, which improved neuronal survival (Fluoro-Jade B, 24 h) and neurologic outcome (Rotarod, 1 week). Improved microvascular perfusion by DRP may be effective in the treatment of ischemic stroke and TBI.
-
Since mass spectrometry was introduced as the core technology for large-scale analysis of the proteome, the speed of data acquisition, dynamic ranges of measurements, and data quality are continuously improving. These improvements are triggered by regular launches of new methodologies and instruments.