Bmc Bioinformatics
-
This paper describes a method for detecting event trigger words in biomedical text based on a word sense disambiguation (WSD) approach. We first investigate the applicability of existing WSD techniques to trigger word disambiguation in the BioNLP 2009 shared task data, and find that we are able to outperform a traditional CRF-based approach for certain word types. On the basis of this finding, we combine the WSD approach with the CRF, and obtain significant improvements over the standalone CRF, gaining particularly in recall.
-
Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface. ⋯ pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.