Neurosurg Focus
-
OBJECTIVE Advanced and intelligent robotic control is necessary for neurosurgical robots, which require great accuracy and precision. In this article, the authors propose methods for dynamically and automatically controlling the motion-scaling ratio of a master-slave neurosurgical robotic system to reduce the task completion time. METHODS Three dynamic motion-scaling modes were proposed and compared with the conventional fixed motion-scaling mode. ⋯ RESULTS The task time, total path length, and helpfulness score were evaluated. Although no statistically significant differences were observed, the mode using the distance between the tips of the slave manipulators improves the suturing performance. CONCLUSIONS Dynamic motion scaling has great potential for the intelligent and accurate control of neurosurgical robots.
-
Objective Recent studies have investigated the role of spinal image guidance for pedicle screw placement. Many authors have observed an elevated placement accuracy and overall improvement of outcome measures. This study assessed a bi-institutional experience following introduction of the Renaissance miniature robot for spinal image guidance in Europe. ⋯ Conclusions The hexapod miniature robotic device proved to be a safe and robust instrument in all situations, including those in which patients were treated on an emergency basis. Placement accuracy was high; peri- and early postoperative complication rates were found to be lower than rates published in other series of percutaneous screw placement techniques. Intraoperative radiation exposure was found to be comparable to published values for other minimally invasive and conventional approaches.