World Neurosurg
-
The use of 5-aminolevulinic acid (5-ALA) for intraoperative protoporphyrin IX fluorescent imaging in the resection of malignant gliomas has been demonstrated to improve tumor visualization, increase the extent of resection, and extend progression-free survival. The current technique for visualization of 5-ALA consists of excitation and emission filters built into the operating microscope. However, there are notable limitations to this process, including low quantum yield, expense, and masking of surrounding anatomy. ⋯ Our study demonstrates the feasibility of using blue/ultraviolet light supplied by a commercially available, inexpensive flashlight or headlamp to visualize 5-ALA fluorescence in high-grade gliomas. We also provide the first documentation of the intraoperative use of the new Designs for Vision REVEAL FGS 5-ALA fluorescent headlight and loupes and report on the experience. Lack of an operative microscope capable of fluorescent illumination should not be a limiting factor in performing fluorescent-guided glioma resection.
-
Cranial dural arteriovenous fistulas (dAVFs) are rare acquired neurovascular disorders that have the potential to profoundly alter the local and global cerebral venous drainage. Factors such as location, angioarchitecture, degree of shunting, and mode of presentation all appear to have some bearing on the natural history of dAVFs, which can vary from almost entirely benign to life-threatening. ⋯ It is only through a thorough understanding of their behavior and the treatment options available that we will be able to deliver tailored treatment to the correct dAVF and the correct patient. We aimed to provide an up-to-date summary of the reported data on the natural history and predictors of aggressive behavior for cranial dAVFs in general, followed by site-specific management considerations.
-
Intraaxial tumors of the central lobe are challenging lesions to deal with because of the high eloquence of this anatomic area.1,2 Diffusion tensor imaging magnetic resonance imaging and fluorescein (F) have proven to be useful in the planning and execution, respectively of glioma surgery.3-9 Nevertheless, the advantages of intraoperative use of augmented reality (AR) with diffusion tensor imaging-based high-definition fiber tractography (HDFT) are still underestimated. In the AR HDFT-F technique reported by our group, the integration of AR into the microscope comes through the BrainLAB Curve navigation platform (BrainLAB AG, Munich Germany), Smartbrush software (BrainLAB AG), KINEVO 900 surgical microscope (Carl Zeiss, Oberkochen, Germany), and YELLOW 560 filter (Carl Zeiss).9 The microscope establishes a wired autodetection of the navigation platform, and the eyepiece functions as a "see-through display" of the AR images, which are overlapped onto the surgical field. Video 1 shows the technical key aspects of the intraoperative use of the AR HDFT-F technique in the maximal safe anatomic resection of a postcentral gyrus high-grade glioma.